Local Aronson–Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds

Journal de Mathématiques Pures et Appliquées - Tập 91 - Trang 1-19 - 2009
Peng Lu1, Lei Ni2, Juan-Luis Vázquez3, Cédric Villani4
1Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
2Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, USA
3Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
4Institut Universitaire de France et Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon Cedex 07, France

Tài liệu tham khảo

Aronson, 1969, Regularity properties of flows through porous media, SIAM J. Appl. Math., 17, 461, 10.1137/0117045 Aronson, 1979, Régularité des solutions de l'équation des milieux poreux dans Rn, C. R. Acad. Sci. Paris Sér. A–B, 288, 103 Aronson, 1993, A self-similar solution to the focusing problem for the porous medium equation, European J. Appl. Math., 4, 65, 10.1017/S095679250000098X Bénilan, 1981, Evolution Equations and Accretive Operator Caffarelli, 1979, Continuity of the density of a gas flow in a porous medium, Trans. Amer. Math. Soc., 252, 99, 10.1090/S0002-9947-1979-0534112-2 Caffarelli, 1980, Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Indiana Univ. Math. J., 29, 361, 10.1512/iumj.1980.29.29027 Caffarelli, 1987, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. J., 36, 373, 10.1512/iumj.1987.36.36022 Carrillo, 2000, Asymptotic L1-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J., 49, 113, 10.1512/iumj.2000.49.1756 Carrillo, 2003, Asymptotic for fast diffusion equations, Comm. Partial Differential Equations, 28, 1023, 10.1081/PDE-120021185 Chow, 2008, The Ricci Flow: Techniques and Applications, Part II: Analytic Aspects, vol. 144 Daskalopoulos, 2007, Degenerate Diffusions. Initial Value Problems and Local Regularity Theory, vol. 1 Del Pino, 2002, Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., 81, 847, 10.1016/S0021-7824(02)01266-7 J. Demange, Des équations à diffusion rapide aux inégalités de Sobolev sur les modèles de la géométrie, PhD thesis, Univ. Paul Sabatier, Toulouse, 2005 Demange, 2005, Porous media equation and Sobolev inequalities under negative curvature, Bull. Sci. Math., 129, 804, 10.1016/j.bulsci.2005.05.003 Demange, 2008, Improved Gagliardo–Nirenberg–Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal., 254, 593, 10.1016/j.jfa.2007.01.017 J. Demange, From porous media equations to generalized Sobolev inequalities on a Riemannian manifold, preprint, 2004 Esteban, 1988, A nonlinear heat equation with singular diffusivity, Comm. Partial Differential Equations, 13, 985, 10.1080/03605308808820566 Esteban, 1990, Régularité des solutions positives de l'équation parabolique p-laplacienne, C. R. Acad. Sci. Paris Ser. I Math., 310, 105 Feldman, 2005, Entropy and reduced distance for Ricci expanders, J. Geom. Anal., 15, 49, 10.1007/BF02921858 N. Grunewald, F. Otto, C. Villani, M.G. Westdickenberg, A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit, Ann. Inst. H. Poincaré (Probab. Statist.), submitted for publication Kosygina, 2001, The behavior of the specific entropy in the hydrodynamic scaling limit, Ann. Probab., 29, 1086, 10.1214/aop/1015345597 B. Kotschwar, L. Ni, Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula, Ann. Sci. Ecole Norm. Sup., submitted for publication Li, 1986, On the parabolic kernel of the Schrödinger operator, Acta Math., 156, 153, 10.1007/BF02399203 Lott Ni, 2004, The entropy formula for linear heat equation, J. Geom. Anal., 14, 87, 10.1007/BF02921867 Ni, 2008, Monotonicity and Li–Yau-Hamilton inequality, Surveys in Differential Geometry, 12, 251, 10.4310/SDG.2007.v12.n1.a7 Otto, 2001, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26, 101, 10.1081/PDE-100002243 Perelman Souplet, 2006, Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc., 38, 1045, 10.1112/S0024609306018947 P. Topping, L-optimal transportation, J. Reine Angew. Math., submitted for publication Vázquez, 1989, Regularity of solutions and interfaces of the porous medium equation via local estimates, Proc. Roy. Soc. Edinburgh, 112A, 1, 10.1017/S0308210500028146 Vázquez, 2003, Asymptotic behaviour for the porous medium equation posed in the whole space, J. Evol. Equ., 3, 67, 10.1007/s000280300004 Vázquez, 2006, Smoothing and Decay Estimates for Nonlinear Diffusion Equations, vol. 33 Vázquez, 2007, The Porous Medium Equation Villani, 2003, Topics in optimal transportation, vol. 58 Villani, 2008