Liver-specific NG37 overexpression leads to diet-dependent fatty liver disease accompanied by cardiac dysfunction

Genes and Nutrition - Tập 11 - Trang 1-10 - 2016
Xin Zhou1, MengMeng Xu2, Liyang Wang1, Yulian Mu3, Rui Feng1, Zhilong Dong4, Yuexin Pan5, Xunzhang Chen6, Yongfeng Liu3,7, Shangen Zheng6, Donald D. Anthony5, Jianjie Ma8, Williams B. Isaacs9, Xuehong Xu1
1College of Life Sciences, Shaanxi Normal University, Xi’an, China
2Department of Pharmacology, Duke University Medical Center, Durham, USA
3State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
4Lanzhou University School of Medicine, Lanzhou, China
5Case Western Reserve University School of Medicine, Cleveland, USA
6Wuhan General Hospital of Guangzhou Military Command, Wuhan, China
7College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
8Ohio State University School of Medicine, Columbus, USA
9Johns Hopkins School of Medicine, Baltimore, USA

Tóm tắt

Environmental factors are well-known causes of diseases. However, aside from a handful of risk indicators, genes’ encoding susceptibility to chronic illnesses and their associated environmental triggers are largely unknown. In this era of increasingly rich diets, such genetic predispositions would be immensely helpful from a public health perspective. The novel transgenic mouse model with liver-specific NG37 overexpression characterized in this article identifies the diet-dependent function of NG37 in the pathogenesis of fatty liver disease and cardiac arrhythmia. The liver-specific NG37 overexpression transgenic mouse model described here was generated using the Alb-SV40 polyA expression plasmid backbone. NG37 cDNA under control of the albumin promoter for liver-specific expression was fused with a 5′ terminal M2 FLAG sequence and a SV40 early region transcription terminator/polyadenylation site attached at the 3′-UTR. These NG37 transgenic mice developed normally and were physiologically normal on a standard diet. However, in comparison to non-transgenic (nTG) litter mates, these mice develop dramatic phenotypes within 12–18 days of starting a high-fat diet: (i) increased body weight (28.5 ± 12.3 g), (ii) increased liver weight (87.4 ± 35.7 mg), (iii) increased heart weight (140 ± 38.4 mg), and (iv) cardiac arrhythmia. The enlarged livers of high-fat diet NG37 transgenic mice was histologically similar to human fatty liver disease and contained Maltese cross birefringent active depositions in hepatocytes that are indicative of fatty liver disease. We also confirmed via X-ray diffraction the steatotic vesicles in the diseased hepatocytes of our high-fat diet NG37 mice was composed of cholesteryl derivatives also found in human fatty liver disease. In addition to cardiac enlargement, NG37 transgenic mice on high-fat diet also exhibited highly irregular bradycardia not present in either high-fat diet nTG littermates or normal-diet transgenic litter mates. The dramatic high-fat diet-dependent symptoms (increased body weight, cardiac enlargement, fatty liver, and cardiac arrhythmias) characterized in our liver-specific NG37 overexpression mouse model identifies NG37 as a gene encoding latent lipid metabolism pathology induced only in the presence of an environmental factor relevant to human health: high-fat diet.

Tài liệu tham khảo

Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev. 2008;60:311–57. doi:10.1124/pr.108.00001. Billings LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci. 2010;1212:59–77. doi:10.1111/j.1749-6632.2010.05838.x. Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, et al. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science. 2000;287:989–94. doi:10.1126/science.287.5455.989. Kumánovics A, Lindahl KF. G7c in the lung tumor susceptibility (Lts) region of the Mhc class III region encodes a von Willebrand factor type A domain protein. Immunogenetics. 2001;53:64–8. doi:10.1007/s002510000297. Perricone C, Ciccacci C, Ceccarelli F, Di Fusco D, Spinelli FR, Cipriano E, et al. TRAF3IP2 gene and systemic lupus erythematosus: association with disease susceptibility and pericarditis development. Immunogenetics. 2013;65:703–9. doi:10.1007/s00251-013-0717-6. Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell. 2002;13:3369–87. doi:10.1091/mbc.E02-05-0259. C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998;282:2012–8. doi:10.1126/science.282.5396.2012. Vogel BE, Hedgecock EM. Hemicentin, a conserved extracellular member of the immunoglobulin superfamily, organizes epithelial and other cell attachments into oriented line-shaped junctions. Development. 2001;128:883–94. Feitosa NM, Zhang J, Carney TJ, Metzger M, Korzh V, Bloch W, et al. Hemicentin 2 and fibulin 1 are required for epidermal-dermal junction formation and fin mesenchymal cell migration during zebrafish development. Dev Biol. 2012;369:235–48. doi:10.1016/j.ydbio.2012.06.023. Jordan SN, Olson S, Canman JC. Cytokinesis: thinking outside the cell. Curr Biol. 2011;21:R119–21. doi:10.1016/j.cub.2010.12.040. Xu X, Vogel BE. A secreted protein promotes cleavage furrow maturation during cytokinesis. Curr Biol. 2011;21:114–9. doi:10.1016/j.cub.2010.12.006. Xu X, Xu M, Zhou X, Jones OB, Moharomd E, Pan Y, et al. Specific structure and unique function define the hemicentin. Cell Biosci. 2013;3:27–32. doi:10.1186/2045-3701-3-27. Maruyama M, Li BY, Chen H, Xu X, Song LS, Guatimosim S, et al. FKBP12 is a critical regulator of the heart rhythm and the cardiac voltage-gated sodium current in mice. Circ Res. 2011;108:1042–52. doi:10.1161/CIRCRESAHA.110.237867. Xu M, Jones OD, Zheng S, Li Y, Yan G, Pan Y, et al. Cytoplasmic accumulation of liquid-crystal like droplets in post-infection sputum generated by gram-positive bacteria. Mol Cryst Liq Cryst. 2011;547:173–80. doi:10.1080/15421406.2011.572045. Xu M, Xu X. Liquid-crystal in embryogenesis and pathogenesis of human diseases. In: Sato K, editor. Embryogenesis. Rijeka: InTech; 2012. p. 637–52. Xu X, Dong C, Vogel BE. Hemicentins assemble on diverse epithelia in the mouse. J Histochem Cytochem. 2007;55:119–26. doi:10.1369/jhc.6A6975.2006. Xu X, Xu M, Jones OD, Chen X, Li Y, Yan G, et al. Liquid crystal in lung development and chicken embryogenesis. Mol Cryst Liq Cryst. 2011;547:164–72. doi:10.1080/15421406.2011.572042. Bharati S, Goldschlager N, Kusumoto F, Lazzara R, Azar R, Hammill S, et al. Sinus node dysfunction. In: Camm AJ, Saksena S, editors. Electrophysiological disorders of the heart. Phildadelphia: Elsevier Churchill-Livingstone; 2005. p. 207–26. doi:10.1016/B978-0-443-06570-5.50018-6. Vogler J, Breithardt G, Eckardt L. Bradyarrhythmias and conduction blocks. Rev Esp Cardiol (Engl Ed). 2012;65:656–67. doi:10.1016/j.rec.2012.01.027. Kumar P, Kusumoto FM, Goldschlager N. Bradyarrhythmias in the elderly. Clin Geriatr Med. 2012;28:703–15. doi:10.1016/j.cger.2012.08.004. Santos MA, Sousa AC, Reis FP, Santos TR, Lima SO, Barreto-Filho JA. Does the aging process significantly modify the mean heart rate? Arq Bras Cardiol. 2013;101:388–98. doi:10.5935/abc.20130188. Mason KP, Lonnqvist PA. Bradycardia in perspective-not all reductions in heart rate need immediate intervention. Paediatr Anaesth. 2015;25:44–51. doi:10.1111/pan.12584. Oflaz MB, Kucukdurmaz Z, Guven AS, Karapinar H, Kaya A, Sancakdar E, et al. Bradycardia seen in children with Crimean-Congo hemorrhagic fever. Vector Borne Zoonotic Dis. 2013;13:807–11. doi:10.1089/vbz.2012.1200. Snoek M, Albertella MR, van Kooij M, Wixon J, van Vugt H, de Groot K, et al. G7c, a novel gene in the mouse and human major histocompatibility complex class III region, possibly controlling lung tumor susceptibility. Immunogenetics. 2000;51:383–6. doi:10.1007/s002510050634. van Kooij M, de Groot K, van Vugt H, Aten J, Snoek M. Genotype versus phenotype: conflicting results in mapping a lung tumor susceptibility locus to the G7c recombination interval in the mouse MHC class III region. Immunogenetics. 2001;53:656–61. doi:10.1007/s00251-001-0381-0. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. New York: Garland Science Press; 2008. Haimovici R, Gantz DL, Rumelt S, Freddo TF, Small DM. The lipid composition of drusen, Bruch’s membrane, and sclera by hot stage polarizing light microscopy. IOVS. 2001;42:1592–9. Goldstein JL, Brown MS. From fatty streak to fatty liver: 33 years of joint publications in the JCI. J Clin Invest. 2008;118:1220–2. doi:10.1172/jci34973. Goldstein JL, Brown MS. The clinical investigator: bewitched, bothered, and bewildered–but still beloved. J Clin Invest. 1997;99:2803–12. doi:10.1172/jci119470.