Live fuel moisture content estimation from MODIS: A deep learning approach
Tài liệu tham khảo
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., 2016. Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp. 265–283.
Arganaraz, 2016, Estimation of live fuel moisture content from MODIS images for fire danger assessment in Southern Gran Chaco, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 5339, 10.1109/JSTARS.2016.2575366
Bottou, 2012, 421
Caccamo, 2012, Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data, Int. J. Wildland Fire, 21, 257, 10.1071/WF11024
Chollett, F., 2015. Keras. In. https://keras.io.
Chuvieco, 2014, Integrating geospatial information into fire risk assessment, Int. J. Wildland Fire, 23, 606, 10.1071/WF12052
Daly, 1994, A statistical-topographic model for mapping climatological precipitation over mountainous terrain, J. Appl. Meteorol. Climatol., 33, 140, 10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
Danson, 2004, Estimating live fuel moisture content from remotely sensed reflectance, Remote Sens. Environ., 92, 309, 10.1016/j.rse.2004.03.017
Dasgupta, 2007, Evaluating remotely sensed live fuel moisture estimations for fire behavior predictions in Georgia, USA, Remote Sens. Environ., 108, 138, 10.1016/j.rse.2006.06.023
Davis, 1997, Variation of snow cover ablation in the boreal forest: a sensitivity study on the effects of conifer canopy, J. Geophys. Res.: Atmos., 102, 29389, 10.1029/97JD01335
Dillon, 2011, Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006, Ecosphere, 2, art130, 10.1890/ES11-00271.1
Fan, 2018, Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region, Remote Sens. Environ., 205, 210, 10.1016/j.rse.2017.11.020
García, 2008, Combining AVHRR and meteorological data for estimating live fuel moisture content, Remote Sens. Environ., 112, 3618, 10.1016/j.rse.2008.05.002
Hall, D., Riggs, G., 2016. MODIS/Terra Snow Cover 8-Day L3 Global 500 m SIN Grid, Version 6. In. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center.
Hao, 2007, Retrieval of real-time live fuel moisture content using MODIS measurements, Remote Sens. Environ., 108, 130, 10.1016/j.rse.2006.09.033
Jia, 2019, Estimating live fuel moisture using SMAP L-band radiometer soil moisture for Southern California, USA, Remote Sensing, 11, 1575, 10.3390/rs11131575
Jurdao, 2012, Modelling fire ignition probability from satellite estimates of live fuel moisture content, Fire Ecol., 8, 77, 10.4996/fireecology.0801077
Jurdao, 2013, Regional estimation of woodland moisture content by inverting Radiative Transfer Models, Remote Sens. Environ., 132, 59, 10.1016/j.rse.2013.01.004
Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
LeCun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539
Li, 2018, Comparison of fire radiative power estimates from VIIRS and MODIS observations, J. Geophys. Res.: Atmos., 123, 4545, 10.1029/2017JD027823
Li, 2016, Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping, Int. J. Remote Sens., 37, 5632, 10.1080/01431161.2016.1246775
McCandless, 2020, Enhancing wildfire spread modelling by building a gridded fuel moisture content product with machine learning, Machine Learn.: Sci. Technol., 1
Monsivais-Huertero, 2018, Phenology-based backscattering model for corn at L-band, IEEE Trans. Geosci. Remote Sens., 56, 4989, 10.1109/TGRS.2018.2803153
Mouillot, 2002, Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem, Glob. Change Biol., 8, 423, 10.1046/j.1365-2486.2002.00494.x
Nolan, 2016, Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia, Geophys. Res. Lett., 43, 4229, 10.1002/2016GL068614
Pelletier, 2019, Temporal convolutional neural network for the classification of satellite image time series, Remote Sensing, 11, 523, 10.3390/rs11050523
Peterson, 2008, Mapping live fuel moisture with MODIS data: a multiple regression approach, Remote Sens. Environ., 112, 4272, 10.1016/j.rse.2008.07.012
Pimont, 2019, A cautionary note regarding the use of cumulative burnt areas for the determination of fire danger index breakpoints, Int. J. Wildland Fire, 28, 254, 10.1071/WF18056
Pimont, 2019, Why is the effect of live fuel moisture content on fire rate of spread underestimated in field experiments in shrublands?, Int. J. Wildland Fire, 28, 127, 10.1071/WF18091
Qi, 2012, Monitoring live fuel moisture using soil moisture and remote sensing proxies, Fire Ecol., 8, 71, 10.4996/fireecology.0803071
Quan, 2016, Retrieval of grassland live fuel moisture content by parameterizing radiative transfer model with interval estimated LAI, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 910, 10.1109/JSTARS.2015.2472415
Quan, 2021, Global fuel moisture content mapping from MODIS, Int. J. Appl. Earth Obs. Geoinf., 101, 102354, 10.1016/j.jag.2021.102354
Rao, 2020, SAR-enhanced mapping of live fuel moisture content, Remote Sens. Environ., 245, 111797, 10.1016/j.rse.2020.111797
Reichstein, 2019, Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195, 10.1038/s41586-019-0912-1
Riggs, G.A., Hall, D.K., Román, M.O., 2015. MODIS snow products collection 6 user guide. National Snow and Ice Data Center, Boulder, CO, USA, 66.
Ruffault, 2018, How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems, Agric. For. Meteorol., 262, 391, 10.1016/j.agrformet.2018.07.031
Safran, I., Shamir, O., 2017. Depth-width tradeoffs in approximating natural functions with neural networks. In: International Conference on Machine Learning. PMLR, pp. 2979–2987.
Schaaf, C., Wang, Z., 2015. MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global - 500m. In: NASA EOSDIS Land Processes DAAC.
Schlerf, 2006, Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data, Remote Sens. Environ., 100, 281, 10.1016/j.rse.2005.10.006
Srivastava, 2014, Dropout: a simple way to prevent neural networks from overfitting, J. Machine Learn. Res., 15, 1929
Stow, 2007, Stability, normalization and accuracy of MODIS-derived estimates of live fuel moisture for southern California chaparral, Int. J. Remote Sens., 28, 5175, 10.1080/01431160701616129
Taylor, 2001, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res.: Atmos., 106, 7183, 10.1029/2000JD900719
Trombetti, 2008, Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA, Remote Sens. Environ., 112, 203, 10.1016/j.rse.2007.04.013
Ulaby, 2014
Viegas, 2001, Estimating live fine fuels moisture content using meteorologically-based indices, Int. J. Wildland Fire, 10, 223, 10.1071/WF01022
Wang, 2019, Assessment of the dual polarimetric sentinel-1A data for forest fuel moisture content estimation, Remote Sensing, 11, 1568, 10.3390/rs11131568
Williams, 2016, Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity, Curr. Climate Change Rep., 2, 1, 10.1007/s40641-016-0031-0
Yebra, 2009, Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: solving the ill-posed inverse problem, Remote Sens. Environ., 113, 2403, 10.1016/j.rse.2009.07.001
Yebra, 2008, Estimation of live fuel moisture content from MODIS images for fire risk assessment, Agric. For. Meteorol., 148, 523, 10.1016/j.agrformet.2007.12.005
Yebra, 2013, A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products, Remote Sens. Environ., 136, 455, 10.1016/j.rse.2013.05.029
Yebra, 2018, A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing, Remote Sens. Environ., 212, 260, 10.1016/j.rse.2018.04.053
Yebra, 2019, Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications, Sci. Data, 6, 1
Yuan, 2020, Deep learning in environmental remote sensing: achievements and challenges, Remote Sens. Environ., 241, 111716, 10.1016/j.rse.2020.111716
Zhu, 2019, A multi-frequency framework for soil moisture retrieval from time series radar data, Remote Sens. Environ., 235, 111433, 10.1016/j.rse.2019.111433
Zhu, 2019, Soil moisture retrieval from time series multi-angular radar data using a dry down constraint, Remote Sens. Environ., 231, 111237, 10.1016/j.rse.2019.111237