Litte Hankel Operators Between Vector-Valued Bergman Spaces on the Unit Ball

Springer Science and Business Media LLC - Tập 93 - Trang 1-46 - 2021
David Békollé1, Hugues Olivier Defo1, Edgar L. Tchoundja1, Brett D. Wick2
1Department of Mathematics, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
2Department of Mathematics, Washington University - St. Louis, St. Louis, USA

Tóm tắt

In this paper, we study the boundedness and the compactness of the little Hankel operators $$h_b$$ with operator-valued symbols b between different weighted vector-valued Bergman spaces on the open unit ball $$\mathbb {B}_n$$ in $$\mathbb {C}^n.$$ More precisely, given two complex Banach spaces X, Y,  and $$0 < p,q \le 1,$$ we characterize those operator-valued symbols $$b: \mathbb {B}_{n}\rightarrow \mathcal {L}(\overline{X},Y)$$ for which the little Hankel operator $$h_{b}: A^p_{\alpha }(\mathbb {B}_{n},X) \longrightarrow A^q_{\alpha }(\mathbb {B}_{n},Y),$$ is a bounded operator. Also, given two reflexive complex Banach spaces X, Y and $$1< p \le q < \infty ,$$ we characterize those operator-valued symbols $$b: \mathbb {B}_{n}\rightarrow \mathcal {L}(\overline{X},Y)$$ for which the little Hankel operator $$h_{b}: A^p_{\alpha }(\mathbb {B}_{n},X) \longrightarrow A^q_{\alpha }(\mathbb {B}_{n},Y),$$ is a compact operator.

Tài liệu tham khảo

Aleman, A., Constantin, O.: Hankel operators on Bergman spaces and similarity to contractions. Int. Math. Res. Not. 35, 1785–1801 (2004) Békollé, D.: Inégalité à poids pour le projecteur de Bergman dans la boule unité de \({\mathbb{C}}^{n}\). Studia Math. 71(3), 305-323 (1981/82) Blasco, O.: Introduction to vector valued Bergman spaces. In: Function Spaces and Operator Theory, vol. 8. Univ. Joensuu Dept. Math. Rep. Ser., pp. 9–30. Joensuu (2005) Bonami, A., Luo, L.: On Hankel operators between Bergman spaces on the unit ball. Houst. J. Math. 31, 815–828 (2005) Constantin, O.: Weak product decompositions and Hankel operators on vector-valued Bergman spaces. J. Oper. Theory 59(1), 157–178 (2008) Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. 103, 611–635 (1976) Diestel, J., Uhl, J.J.: Vector Measures. With a foreword by B.J. Pettis, Mathematical Surveys, No. 15. American Mathematical Society, Providence, RI (1977) Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249. Springer, New York (2014) Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010) Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Springer-Verlag, New York (2000) Oliver, R.V.: Hankel operators on vector-valued Bergman spaces. Programa de Doctorat en Matemàtiques. Departament de Mathematica i Informàtica. Universitat de Barcelona (2017) Pau, J., Zhao, R.: Weak factorization and Hankel forms for weighted Bergman spaces on the unit ball. Mathematische Annalen 363, 1–21 (2015) Peller, V.V.: Hankel Operators and Theirs Applications. Springer Monographs in Mathematics. Springer-Verlag, New York (2003) Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics, vol. 226. Springer-Verlag, New York (2005) Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs, vol. 138, 2nd edn. American Mathematical Society, Providence, RI (2007) Zhu, K.: Duality of Bloch spaces and norm convergence of Taylor series. Mich. Math. J. 38, 89–101 (1991)