Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer

Materials Today Energy - Tập 18 - Trang 100494 - 2020
J.C. Barbosa1,2, A. Reizabal3, D.M. Correia1,2, A. Fidalgo-Marijuan4, R. Gonçalves5, M.M. Silva5, S. Lanceros-Mendez6,7, C.M. Costa1,5
1Center of Physics, University of Minho, 4710-058 Braga, Portugal
2Department of Chemistry and CQ-VR, University of Trás -os -Montes e Alto Douro, 5000-801, Vila Real, Portugal
3Macromolecular Chemistry Research Group (LABQUIMAC), Dept. of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
4Mineralogía y Petrología, Universidad Del País Vasco (UPV/EHU), Barrio Sarriena S/n, Leioa, Bizkaia, 48940, Spain
5Center of Chemistry, University of Minho, 4710-058, Braga, Portugal
6BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
7Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain

Tài liệu tham khảo

Stephan, 2009, ELECTROLYTES | gel, 140 Harrop, 2010 Choi, 2010 Balbuena, 2004 Scrosati, 2010, Lithium batteries: status, prospects and future, J. Power Sources, 195, 2419, 10.1016/j.jpowsour.2009.11.048 Yoshio, 2010 Costa, 2020, Polymers for advanced lithium-ion batteries: state of the art and future needs on polymers for the different battery components, Prog. Energy Combust. Sci., 79, 100846, 10.1016/j.pecs.2020.100846 Costa, 2019, Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes, Energy Storage Materials, 22, 346, 10.1016/j.ensm.2019.07.024 Abraham, 1995, Polymer electrolytes reinforced by Celgard® membranes, J. Electrochem. Soc., 142, 683, 10.1149/1.2048517 Arora, 2004, Battery separators, Chem. Rev., 104, 4419, 10.1021/cr020738u Costa, 2012, Effect of the microsctructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications, Solid State Ionics, 217, 19, 10.1016/j.ssi.2012.04.011 Ramakrishna, 2005 Kim, 2001, Electrochemical performances of lithium-ion cells prepared with polyethylene oxide-coated separators, Electrochem. Commun., 3, 535, 10.1016/S1388-2481(01)00214-4 Yu, 2016, Suppression of the polysulfide-shuttle behavior in Li–S batteries through the development of a facile functional group on the polypropylene separator, Mater. Horizons, 3, 314, 10.1039/C6MH00043F Cho, 2011, Facile fabrication of nanoporous composite separator membranes for lithium-ion batteries: poly(methyl methacrylate) colloidal particles-embedded nonwoven poly(ethylene terephthalate), J. Mater. Chem., 21, 8192, 10.1039/c0jm04340k Li, 2017, Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries, J. Membr. Sci., 530, 125, 10.1016/j.memsci.2017.02.027 Cho, 2007, Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery, Electrochem. Solid State Lett., 10, A159, 10.1149/1.2730727 Shayapat, 2015, Electrospun polyimide-composite separator for lithium-ion batteries, Electrochim. Acta, 170, 110, 10.1016/j.electacta.2015.04.142 Yanilmaz, 2017, High-strength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries, J. Mater. Sci., 52, 5232, 10.1007/s10853-017-0764-8 Costa, 2014, Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems, J. Power Sources, 245, 779, 10.1016/j.jpowsour.2013.06.151 Sousa, 2014, Influence of the porosity degree of poly(vinylidene fluoride-co-hexafluoropropylene) separators in the performance of Li-ion batteries, J. Power Sources, 263, 29, 10.1016/j.jpowsour.2014.04.014 Kuribayashi, 1996, Characterization of composite cellulosic separators for rechargeable lithium-ion batteries, J. Power Sources, 63, 87, 10.1016/S0378-7753(96)02450-0 Nguyen, 2018, Recycling different eggshell membranes for lithium-ion battery, Mater. Lett., 228, 504, 10.1016/j.matlet.2018.06.081 Boriboon, 2018, Cellulose ultrafine fibers embedded with titania particles as a high performance and eco-friendly separator for lithium-ion batteries, Carbohydr. Polym., 189, 145, 10.1016/j.carbpol.2018.01.077 Xiao, 2015, Preparation and performance of poly(vinyl alcohol) porous separator for lithium-ion batteries, J. Membr. Sci., 487, 221, 10.1016/j.memsci.2015.04.004 Tsuji, 2003, A new strategy for recycling and preparation of poly(l-lactic acid): hydrolysis in the melt, Biomacromolecules, 4, 835, 10.1021/bm034060j Pellegrino, 2017, Taurine grafting and collagen adsorption on PLLA films improve human primary chondrocyte adhesion and growth, Colloids Surf. B Biointerfaces, 158, 643, 10.1016/j.colsurfb.2017.07.047 Koide, 2013, Effect of the cast-solvent on the morphology of cast films formed with a mixture of stereoisomeric poly(lactic acids), Polym. J., 45, 645, 10.1038/pj.2012.192 Corey, 2008, The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons, Acta Biomater., 4, 863, 10.1016/j.actbio.2008.02.020 Ribeiro, 2011, Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes, Sci. Technol. Adv. Mater., 12, 10.1088/1468-6996/12/1/015001 Selvam, 2009, Microporous poly(L-lactic acid) membranes fabricated by polyethylene glycol solvent-cast/particulate leaching technique, Tissue Eng. C Methods, 15, 463, 10.1089/ten.tec.2008.0431 Yoshida, 2014, High piezoelectric performance of poly (lactic acid) film manufactured by solid-state extrusion, Jpn. J. Appl. Phys., 53, 10.7567/JJAP.53.09PC02 Ladpli, 2019, Multifunctional energy storage composite structures with embedded lithium-ion batteries, J. Power Sources, 414, 517, 10.1016/j.jpowsour.2018.12.051 Shah Mohammadi, 2014, 11 - polylactic acid (PLA) biomedical foams for tissue engineering, 313 Conn, 1995, Safety assessment of polylactide (PLA) for use as a food-contact polymer, Food Chem. Toxicology, 33, 273, 10.1016/0278-6915(94)00145-E Radusin, 2016 Ando, 2012, Film sensor device fabricated by a piezoelectric poly(L-lactic acid) film, Jpn. J. Appl. Phys., 51 Malinconico, 2018, Applications of poly(lactic acid) in commodities and specialties, 35 Auras, 2004, An overview of polylactides as packaging materials, Macromol. Biosci., 4, 835, 10.1002/mabi.200400043 Maga, 2019, Life cycle assessment of recycling options for polylactic acid, Resour. Conserv. Recycl., 149, 86, 10.1016/j.resconrec.2019.05.018 Zhu, 2016, Degradable cellulose acetate/poly-l-lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes, J. Mater. Chem., 4, 12136, 10.1039/C6TA05207J Li, 2019, Synergistically suppressing lithium dendrite growth by coating poly-l-lactic acid on sustainable gel polymer electrolyte, Energy Technol., 7, 1800768, 10.1002/ente.201800768 Thuyavan, 2016, Impact of solvents and process conditions on the formation of polyethersulfone membranes and its fouling behavior in lake water filtration, J. Chem. Technol. Biotechnol., 91, 2568, 10.1002/jctb.4846 Ismail, 2017, Effect of polymer concentration on the morphology and mechanical properties of asymmetric polysulfone (PSf) membrane, J. Appl. Membrane Sci. Technol., 21 Jiang, 2016, Preparation of poly(L-lactic acid) membrane from solvent mixture via immersion precipitation, Separ. Sci. Technol., 51, 2940, 10.1080/01496395.2016.1239638 Al Tawil, 2018, Microarchitecture of poly(lactic acid) membranes with an interconnected network of macropores and micropores influences cell behavior, Eur. Polym. J., 105, 370, 10.1016/j.eurpolymj.2018.06.012 Guillen, 2011, Industrial & engineering chemistry research, preparation and characterization of membranes formed by nonsolvent induced phase separation, Review, 50, 3798 Kock, 2012, Solid state vibrational spectroscopy of anhydrous lithium hexafluorophosphate (LiPF6), J. Mol. Struct., 1026, 145, 10.1016/j.molstruc.2012.05.053 Sencadas, 2012, Thermal properties of electrospun poly(lactic acid) membranes, J. Macromol. Sci., 51, 411, 10.1080/00222348.2011.597325 Ould Ely, 2019, Batteries safety: recent progress and current challenges, Frontiers Energy Res., 7, 10.3389/fenrg.2019.00071 Neumann, 2017, Biodegradable poly (l-lactic acid) (PLLA) and PLLA-3-arm blend membranes: The Use Of Plla-3-Arm As A Plasticizer, Polymer Testing, 60, 84, 10.1016/j.polymertesting.2017.03.013 Shekarian, 2019, Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery, J. Nanostructures, 9, 736 Liu, 2014, Effect of silica nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) coated layers on the performance of polypropylene separator for lithium-ion batteries, J. Energy Chem., 23, 582, 10.1016/S2095-4956(14)60188-1 Yanilmaz, 2013, Fabrication and characterization of SiO2/PVDF composite nanofiber-coated PP nonwoven separators for lithium-ion batteries, J. Polym. Sci. B Polym. Phys., 51, 1719, 10.1002/polb.23387 Hassoun, 2011, A lithium ion battery using nanostructured Sn–C anode, LiFePO4 cathode and polyethylene oxide-based electrolyte, Solid State Ionics, 202, 36, 10.1016/j.ssi.2011.08.016 Djian, 2007, Lithium-ion batteries with high charge rate capacity: influence of the porous separator, J. Power Sources, 172, 416, 10.1016/j.jpowsour.2007.07.018 Landesfeind, 2016, Tortuosity determination of battery electrodes and separators by impedance spectroscopy, J. Electrochem. Soc., 163, A1373, 10.1149/2.1141607jes Weidner, 2009, Separators and membranes for batteries, capacitors, fuel cells, and other electrochemical systems, ECS Trans., 19 Fongy, 2010, Ionic vs electronic power limitations and analysis of the fraction of wired grains in LiFePO[sub 4] composite electrodes, J. Electrochem. Soc., 157, A885, 10.1149/1.3432559 Logan, 2018, Impact of ohmic resistance on measured electrode potentials and maximum power production in microbial fuel cells, Environ. Sci. Technol., 52, 8977, 10.1021/acs.est.8b02055 Gören, 2016, Influence of solvent evaporation rate in the preparation of carbon-coated lithium iron phosphate cathode films on battery performance, Energy Technol., 4, 573, 10.1002/ente.201500392 Cao, 2012, La0.6Sr0.4CoO3−δ modified LiFePO4/C composite cathodes with improved electrochemical performances, Electrochim. Acta, 67, 152, 10.1016/j.electacta.2012.02.031 Eftekhari, 2017, Energy efficiency: a critically important but neglected factor in battery research, Sustain. Energy Fuels, 1, 2053, 10.1039/C7SE00350A Guo, 2011, Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy, Electrochim. Acta, 56, 3981, 10.1016/j.electacta.2011.02.014 Williamson, 2019, Temperature-dependent electrochemical characteristics of antimony nanocrystal alloying electrodes for Na-ion batteries, ACS Appl. Energy Mater., 2, 6741, 10.1021/acsaem.9b01216 Pan, 2016, Mesoporous Cladophora cellulose separators for lithium-ion batteries, J. Power Sources, 321, 185, 10.1016/j.jpowsour.2016.04.115 Reizabal, 2020, Tailoring silk fibroin separator membranes pore size for improving performance of lithium ion batteries, J. Membr. Sci., 598, 117678, 10.1016/j.memsci.2019.117678