Lithium-ion battery remaining useful life prediction: a federated learning-based approach

Renxin Zhong1, Bingtao Hu1, Yixiong Feng1, Shanhe Lou1, Fei Wang2, Guangshen Li3, Junbo Tan1
1State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
2Bluetron Digital Technology Co., LTD, Hangzhou, 311215, China
3Shandong Pacific Optics Fiber and Cable Co., LTD, Liaocheng, 252311, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmad T, Madonski R, Zhang D et al (2022) Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renew Sustain Energy Rev 160:112128. https://doi.org/10.1016/j.rser.2022.112128

Altinpulluk NB, Altinpulluk D, Ramanan P, et al. (2023) Federated battery diagnosis and prognosis. arXiv preprint arXiv:2310.09628https://doi.org/10.48550/arXiv.2310.09628

Ansari S, Ayob A, Lipu MH et al (2022) Remaining useful life prediction for lithium-ion battery storage system: a comprehensive review of methods, key factors, issues and future outlook. Energy Rep 8:12153–12185. https://doi.org/10.1016/j.egyr.2022.09.043

Arunan A, Qin Y, Li X et al (2023) A federated learning-based industrial health prognostics for heterogeneous edge devices using matched feature extraction. IEEE Trans Autom Sci Eng. https://doi.org/10.1109/TASE.2023.3274648

Bai G, Su Y, Rahman MM et al (2023) Prognostics of lithium-ion batteries using knowledge-constrained machine learning and Kalman filtering. Reliab Eng Syst Saf 231:108944. https://doi.org/10.1016/j.ress.2022.108944

Banabilah S, Aloqaily M, Alsayed E et al (2022) Federated learning review: fundamentals, enabling technologies, and future applications. Inf Process Manage 59(6):103061. https://doi.org/10.1016/j.ipm.2022.103061

Chen D, Hong W, Zhou X (2022) Transformer network for remaining useful life prediction of lithium-ion batteries. IEEE Access 10:19621–19628. https://doi.org/10.1109/ACCESS.2022.3151975

Dang W, Liao S, Yang B et al (2023) An encoder-decoder fusion battery life prediction method based on gaussian process regression and improvement. J Energy Storage 59:106469. https://doi.org/10.1016/j.est.2022.106469

Guo L, Yu Y, Qian M et al (2022) Fedrul: a new federated learning method for edge-cloud collaboration based remaining useful life prediction of machines. IEEE/ASME Trans Mechatron 28(1):350–359. https://doi.org/10.1109/TMECH.2022.3195524

He W, Williard N, Osterman M et al (2011) Prognostics of lithium-ion batteries based on dempster-Shafer theory and the Bayesian Monte Carlo method. J Power Sources 196(23):10314–10321. https://doi.org/10.1016/j.jpowsour.2011.08.040

Kamei S, Taghipour S (2023) A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life. Reliab Eng Syst Saf 233:109130. https://doi.org/10.1016/j.ress.2023.109130

Kevin I, Wang K, Zhou X et al (2021) Federated transfer learning based cross-domain prediction for smart manufacturing. IEEE Trans Industr Inf 18(6):4088–4096

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

Leng J, Sha W, Wang B et al (2022) Industry 5.0: prospect and retrospect. J Manuf Syst 65:279–295. https://doi.org/10.1016/j.jmsy.2022.09.017

Li L, Fan Y, Tse M et al (2020) A review of applications in federated learning. Comput Ind Eng 149:106854. https://doi.org/10.1016/j.cie.2020.106854

Li X, Li J, Zuo L et al (2022) Domain adaptive remaining useful life prediction with transformer. IEEE Trans Instrum Meas 71:1–13. https://doi.org/10.1109/TIM.2022.3200667

Li X, Yu D, Vilsen SB et al (2023) The development of machine learning-based remaining useful life prediction for lithium-ion batteries. Journal of Energy Chemistry. https://doi.org/10.1016/j.jechem.2023.03.026

Lipu MH, Ansari S, Miah MS et al (2022) Deep learning enabled state of charge, state of health and remaining useful life estimation for smart battery management system: Methods, implementations, issues and prospects. J Energy Storage 55:105752. https://doi.org/10.1016/j.est.2022.105752

Liu Y, He Y, Bian H et al (2022) A review of lithium-ion battery state of charge estimation based on deep learning: directions for improvement and future trends. J Energy Storage 52:104664. https://doi.org/10.1016/j.est.2022.104664

McMahan B, Moore E, Ramage D, et al (2017) Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, PMLR, pp 1273–1282

Nguyen A, Do T, Tran M, et al (2022) Deep federated learning for autonomous driving. In: 2022 IEEE intelligent vehicles symposium (IV), IEEE, pp 1824–1830

Pokhrel SR, Choi J (2020) Federated learning with blockchain for autonomous vehicles: Analysis and design challenges. IEEE Trans Commun 68(8):4734–4746

Rauf H, Khalid M, Arshad N (2022) Machine learning in state of health and remaining useful life estimation: theoretical and technological development in battery degradation modelling. Renew Sustain Energy Rev 156:111903. https://doi.org/10.1016/j.rser.2021.111903

Rieke N, Hancox J, Li W et al (2020) The future of digital health with federated learning. NPJ Digit Med 3(1):119

Saha B, Goebel K (2007) Battery data set. http://ti.arc.nasa.gov/project/prognostic-datarepository

Su X, Liu H, Tao L et al (2021) An end-to-end framework for remaining useful life prediction of rolling bearing based on feature pre-extraction mechanism and deep adaptive transformer model. Comput Ind Eng 161:107531. https://doi.org/10.1016/j.cie.2021.107531

Tan AZ, Yu H, Cui L et al (2022) Towards personalized federated learning. IEEE Trans Neural Netw Learn Syst https://doi.org/10.1109/TNNLS.2022.3160699

Ungurean L, Cârstoiu G, Micea MV et al (2017) Battery state of health estimation: a structured review of models, methods and commercial devices. Int J Energy Res 41(2):151–181. https://doi.org/10.1002/er.3598

Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Adv Neural Inf Process Syst 30

Wang J, Zhang S, Li C et al (2022) A data-driven method with mode decomposition mechanism for remaining useful life prediction of lithium-ion batteries. IEEE Trans Power Electron 37(11):13684–13695. https://doi.org/10.1109/TPEL.2022.3183886

Wang S, Jin S, Bai D et al (2021) A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries. Energy Rep 7:5562–5574. https://doi.org/10.1016/j.egyr.2021.08.182

Wang T, Peng T, Hu B et al (2024) Two-stage imbalanced learning-based quality prediction method for wheel hub assembly. Adv Eng Inform 59:102309

Wang W, Li X, Qiu X et al (2023) A privacy preserving framework for federated learning in smart healthcare systems. Inf Process Manage 60(1):103167

Wang Y, Chen X, Li C et al (2023) Temperature prediction of lithium-ion battery based on artificial neural network model. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2023.120482

Whang SE, Roh Y, Song H et al (2023) Data collection and quality challenges in deep learning: a data-centric AI perspective. VLDB J 32(4):791–813. https://doi.org/10.1007/s00778-022-00775-9

Williard N, He W, Osterman M, et al. (2013) Comparative analysis of features for determining state of health in lithium-ion batteries. Int J Progn Health Manage https://doi.org/10.36001/ijphm.2013.v4i1.1437

Xing Y, Ma EW, Tsui KL et al (2013) An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron Reliab 53(6):811–820. https://doi.org/10.1016/j.microrel.2012.12.003

Zeng A, Chen M, Zhang L, et al. (2023) Are transformers effective for time series forecasting? In: Proceedings of the AAAI conference on artificial intelligence, pp 11121–11128, https://doi.org/10.1609/aaai.v37i9.26317

Zhang C, Xie Y, Bai H et al (2021) A survey on federated learning. Knowl-Based Syst 216:106775. https://doi.org/10.1016/j.knosys.2021.106775

Zhang J, Jiang Y, Li X et al (2022) An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty. Reliab Eng Syst Saf 222:108357. https://doi.org/10.1016/j.ress.2022.108357

Zhang J, Li X, Tian J et al (2023) An integrated multi-head dual sparse self-attention network for remaining useful life prediction. Reliab Eng Syst Saf 233:109096. https://doi.org/10.1016/j.ress.2023.109096

Zhang Q, Yang L, Guo W et al (2022) A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system. Energy 241:122716. https://doi.org/10.1016/j.energy.2021.122716

Zhang Z, Song W, Li Q (2022) Dual-aspect self-attention based on transformer for remaining useful life prediction. IEEE Trans Instrum Meas 71:1–11. https://doi.org/10.1109/TIM.2022.3160561

Zhong R, Hu B, Feng Y et al (2023) Construction of human digital twin model based on multimodal data and its application in locomotion mode identification. Chin J Mech Eng 36(1):126

Zhong R, Hu B, Hong Z et al (2024) Human-Robot hand over task intention recognition framework by fusing human digital twin and deep domain adaptation. J Eng Design 1–17. https://doi.org/10.1080/09544828.2024.2326111