Lithium–copper alloy embedded in 3D porous copper foam with enhanced electrochemical performance toward lithium metal batteries
Tài liệu tham khảo
Li, 2018, 30 years of lithium-ion batteries, Adv. Mater., 30, 1800561, 10.1002/adma.201800561
Winter, 2018, Before Li ion batteries, Chem. Rev., 118, 11433, 10.1021/acs.chemrev.8b00422
Peng, 2017, Review on high-loading and high-energy lithium–sulfur batteries, Adv. Energy Mater., 7, 1700260, 10.1002/aenm.201700260
Zhang, 2020, Towards better Li metal anodes: challenges and strategies, Mater. Today, 33, 56, 10.1016/j.mattod.2019.09.018
Liu, 2020, Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives, Chem. Soc. Rev., 49, 5407, 10.1039/C9CS00636B
Zheng, 2020, Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries, Chem. Soc. Rev., 49, 2701, 10.1039/C9CS00883G
Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16
Cheng, 2017, Towards safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115
Suo, 2013, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4, 1481, 10.1038/ncomms2513
Chen, 2018, High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes, Adv. Mater., 30, 1706102, 10.1002/adma.201706102
Lu, 2014, Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries, Angew. Chem. Int. Ed., 53, 488, 10.1002/anie.201307137
Li, 2017, Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping, Adv. Sci., 4, 1600400, 10.1002/advs.201600400
Xiong, 2014, Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries, J. Power Sources, 246, 840, 10.1016/j.jpowsour.2013.08.041
Li, 2015, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun., 6, 7436, 10.1038/ncomms8436
Zhang, 2017, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27, 1605989, 10.1002/adfm.201605989
Ding, 2013, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135, 4450, 10.1021/ja312241y
Cheng, 2017, Nanodiamonds suppress the growth of lithium dendrites, Nat. Commun., 8, 336, 10.1038/s41467-017-00519-2
Zheng, 2014, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat. Nanotechnol., 9, 618, 10.1038/nnano.2014.152
Li, 2016, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853, 10.1002/adma.201504526
Yan, 2014, Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode, Nano Lett., 14, 6016, 10.1021/nl503125u
Zhu, 2017, Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29, 1603755, 10.1002/adma.201603755
Li, 2018, A flexible solid electrolyte interphase layer for long-life lithium metal anodes, Angew. Chem. Int. Ed., 57, 1505, 10.1002/anie.201710806
Xie, 2017, Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode, Sci. Adv., 3, 10.1126/sciadv.aao3170
Liu, 2017, An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes, Adv. Mater., 29, 1605531, 10.1002/adma.201605531
Park, 2020, Advances in the design of 3D-structured electrode materials for lithium-metal anodes, Adv. Mater., 32, 2002193, 10.1002/adma.202002193
Li, 2017, 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries, Adv. Funct. Mater., 27, 1606422, 10.1002/adfm.201606422
Qiu, 2019, 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance, Adv. Funct. Mater., 29, 1808468, 10.1002/adfm.201808468
Chi, 2017, Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode, Adv. Funct. Mater., 27, 1700348, 10.1002/adfm.201700348
Lu, 2016, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett., 16, 4431, 10.1021/acs.nanolett.6b01581
Zhang, 2019, A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium, Adv. Mater., 31, 1904991, 10.1002/adma.201904991
Lu, 2017, Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance, Energy Storage Mater., 9, 31, 10.1016/j.ensm.2017.06.004
Zhao, 2017, Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes, Nat. Nanotechnol., 12, 993, 10.1038/nnano.2017.129
Xie, 2019, Incorporating flexibility into stiffness: self-grown carbon nanotubes in melamine sponges enable a lithium-metal-anode capacity of 15 mA h cm(-2) cyclable at 15 mA cm(-2), Adv. Mater., 31, 1805654, 10.1002/adma.201805654
Lin, 2016, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., 11, 626, 10.1038/nnano.2016.32
Gu, 2019, Lithiophilic faceted Cu (100) surfaces: high utilization of host surface and cavities for lithium metal anodes, Angew. Chem. Int. Ed., 58, 3092, 10.1002/anie.201812523
Yan, 2016, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010, 10.1038/nenergy.2016.10
Liu, 2020, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes, Adv. Energy Mater., 10, 2002297, 10.1002/aenm.202002297
Lin, 2020, Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes, Small, 16, 2001784, 10.1002/smll.202001784
Zhan, 2021, Deciphering the effect of electrical conductivity of hosts on lithium deposition in composite lithium metal anodes, Adv. Energy Mater., 2101654, 10.1002/aenm.202101654
Zhang, 2019, The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation?, Energy Storage Mater., 23, 556, 10.1016/j.ensm.2019.03.029
Zhao, 2018, Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector, Adv. Energy Mater., 8, 1800266, 10.1002/aenm.201800266
Yang, 2015, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun., 6, 8058, 10.1038/ncomms9058
Luan, 2019, Plasma-strengthened lithiophilicity of copper oxide nanosheet-decorated Cu foil for stable lithium metal anode, Adv. Sci., 6, 1901433, 10.1002/advs.201901433
Zhang, 2018, Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries, Adv. Energy Mater., 8, 1703404, 10.1002/aenm.201703404
Gu, 2018, Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes, Nat. Commun., 9, 1339, 10.1038/s41467-018-03466-8
Zou, 2018, Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries, Nat. Commun., 9, 464, 10.1038/s41467-018-02888-8
Yun, 2016, Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater., 28, 6932, 10.1002/adma.201601409
Wang, 2018, Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance, ACS Appl. Mater. Interfaces, 10, 20244, 10.1021/acsami.8b04881
Cui, 2020, Large-scale modification of commercial copper foil with lithophilic metal layer for Li metal battery, Small, 16, 1905620, 10.1002/smll.201905620
Xu, 2020, Fast-charging and ultrahigh-capacity lithium metal anode enabled by surface alloying, Adv. Energy Mater., 10, 1902343, 10.1002/aenm.201902343
Yue, 2019, Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries, Energy Storage Mater., 21, 180, 10.1016/j.ensm.2018.12.007
Zhang, 2018, A facile annealing strategy for achieving in situ controllable Cu2O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes, J. Mater. Chem. A, 6, 18444, 10.1039/C8TA07612J
Fu, 2021, Lithophilic and antioxidative copper current collectors for highly stable lithium metal batteries, Adv. Funct. Mater., 31, 2009805, 10.1002/adfm.202009805
Gao, 2021, Stamping flexible Li alloy anodes, Adv. Mater., 33, 2005305, 10.1002/adma.202005305
Jia, 2020, Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCux nanowires for excellent Li storage performance, Sci. Bull., 65, 1907, 10.1016/j.scib.2020.07.012
Shek, 1990, A soft X-ray study of the interaction of oxygen with Li, Surf. Sci., 234, 324, 10.1016/0039-6028(90)90564-O
2013
Etxebarria, 2020, Work function evolution in Li anode processing, Adv. Energy Mater., 10, 2000520, 10.1002/aenm.202000520
Wan, 2020, Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode, Nat. Commun., 11, 829, 10.1038/s41467-020-14550-3
Wang, 2019, An interconnected channel-like framework as host for lithium metal composite anodes, Adv. Energy Mater., 9, 1802720, 10.1002/aenm.201802720
Liu, 2019, In situ quantification of interphasial chemistry in Li-ion battery, Nat. Nanotechnol., 14, 50, 10.1038/s41565-018-0284-y
Yang, 2016, Formation mechanism of the solid electrolyte interphase in different ester electrolytes, J. Mater. Chem. A, 9, 19664, 10.1039/D1TA02615A
Sun, 2021, Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive, Angew. Chem. Int. Ed., 60, 18247, 10.1002/anie.202105756