Lithium–copper alloy embedded in 3D porous copper foam with enhanced electrochemical performance toward lithium metal batteries

Materials Today Energy - Tập 22 - Trang 100871 - 2021
Ziyu Lu1,2, Zhixin Tai2, Zhipeng Yu2, Alec P. LaGrow2, Oleksandr Bondarchuk2, Juliana P.S. Sousa2, Lijian Meng3, Zhijian Peng1, Lifeng Liu2
1School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
2Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
3Centre of Innovation in Engineering and Industrial Technology, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal

Tài liệu tham khảo

Li, 2018, 30 years of lithium-ion batteries, Adv. Mater., 30, 1800561, 10.1002/adma.201800561 Winter, 2018, Before Li ion batteries, Chem. Rev., 118, 11433, 10.1021/acs.chemrev.8b00422 Peng, 2017, Review on high-loading and high-energy lithium–sulfur batteries, Adv. Energy Mater., 7, 1700260, 10.1002/aenm.201700260 Zhang, 2020, Towards better Li metal anodes: challenges and strategies, Mater. Today, 33, 56, 10.1016/j.mattod.2019.09.018 Liu, 2020, Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives, Chem. Soc. Rev., 49, 5407, 10.1039/C9CS00636B Zheng, 2020, Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries, Chem. Soc. Rev., 49, 2701, 10.1039/C9CS00883G Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16 Cheng, 2017, Towards safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115 Suo, 2013, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4, 1481, 10.1038/ncomms2513 Chen, 2018, High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes, Adv. Mater., 30, 1706102, 10.1002/adma.201706102 Lu, 2014, Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries, Angew. Chem. Int. Ed., 53, 488, 10.1002/anie.201307137 Li, 2017, Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping, Adv. Sci., 4, 1600400, 10.1002/advs.201600400 Xiong, 2014, Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries, J. Power Sources, 246, 840, 10.1016/j.jpowsour.2013.08.041 Li, 2015, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun., 6, 7436, 10.1038/ncomms8436 Zhang, 2017, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27, 1605989, 10.1002/adfm.201605989 Ding, 2013, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135, 4450, 10.1021/ja312241y Cheng, 2017, Nanodiamonds suppress the growth of lithium dendrites, Nat. Commun., 8, 336, 10.1038/s41467-017-00519-2 Zheng, 2014, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat. Nanotechnol., 9, 618, 10.1038/nnano.2014.152 Li, 2016, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853, 10.1002/adma.201504526 Yan, 2014, Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode, Nano Lett., 14, 6016, 10.1021/nl503125u Zhu, 2017, Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29, 1603755, 10.1002/adma.201603755 Li, 2018, A flexible solid electrolyte interphase layer for long-life lithium metal anodes, Angew. Chem. Int. Ed., 57, 1505, 10.1002/anie.201710806 Xie, 2017, Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode, Sci. Adv., 3, 10.1126/sciadv.aao3170 Liu, 2017, An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes, Adv. Mater., 29, 1605531, 10.1002/adma.201605531 Park, 2020, Advances in the design of 3D-structured electrode materials for lithium-metal anodes, Adv. Mater., 32, 2002193, 10.1002/adma.202002193 Li, 2017, 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries, Adv. Funct. Mater., 27, 1606422, 10.1002/adfm.201606422 Qiu, 2019, 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance, Adv. Funct. Mater., 29, 1808468, 10.1002/adfm.201808468 Chi, 2017, Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode, Adv. Funct. Mater., 27, 1700348, 10.1002/adfm.201700348 Lu, 2016, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett., 16, 4431, 10.1021/acs.nanolett.6b01581 Zhang, 2019, A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high-density nucleation and stable deposition of lithium, Adv. Mater., 31, 1904991, 10.1002/adma.201904991 Lu, 2017, Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance, Energy Storage Mater., 9, 31, 10.1016/j.ensm.2017.06.004 Zhao, 2017, Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes, Nat. Nanotechnol., 12, 993, 10.1038/nnano.2017.129 Xie, 2019, Incorporating flexibility into stiffness: self-grown carbon nanotubes in melamine sponges enable a lithium-metal-anode capacity of 15 mA h cm(-2) cyclable at 15 mA cm(-2), Adv. Mater., 31, 1805654, 10.1002/adma.201805654 Lin, 2016, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., 11, 626, 10.1038/nnano.2016.32 Gu, 2019, Lithiophilic faceted Cu (100) surfaces: high utilization of host surface and cavities for lithium metal anodes, Angew. Chem. Int. Ed., 58, 3092, 10.1002/anie.201812523 Yan, 2016, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010, 10.1038/nenergy.2016.10 Liu, 2020, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes, Adv. Energy Mater., 10, 2002297, 10.1002/aenm.202002297 Lin, 2020, Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes, Small, 16, 2001784, 10.1002/smll.202001784 Zhan, 2021, Deciphering the effect of electrical conductivity of hosts on lithium deposition in composite lithium metal anodes, Adv. Energy Mater., 2101654, 10.1002/aenm.202101654 Zhang, 2019, The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation?, Energy Storage Mater., 23, 556, 10.1016/j.ensm.2019.03.029 Zhao, 2018, Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector, Adv. Energy Mater., 8, 1800266, 10.1002/aenm.201800266 Yang, 2015, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun., 6, 8058, 10.1038/ncomms9058 Luan, 2019, Plasma-strengthened lithiophilicity of copper oxide nanosheet-decorated Cu foil for stable lithium metal anode, Adv. Sci., 6, 1901433, 10.1002/advs.201901433 Zhang, 2018, Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries, Adv. Energy Mater., 8, 1703404, 10.1002/aenm.201703404 Gu, 2018, Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes, Nat. Commun., 9, 1339, 10.1038/s41467-018-03466-8 Zou, 2018, Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries, Nat. Commun., 9, 464, 10.1038/s41467-018-02888-8 Yun, 2016, Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater., 28, 6932, 10.1002/adma.201601409 Wang, 2018, Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance, ACS Appl. Mater. Interfaces, 10, 20244, 10.1021/acsami.8b04881 Cui, 2020, Large-scale modification of commercial copper foil with lithophilic metal layer for Li metal battery, Small, 16, 1905620, 10.1002/smll.201905620 Xu, 2020, Fast-charging and ultrahigh-capacity lithium metal anode enabled by surface alloying, Adv. Energy Mater., 10, 1902343, 10.1002/aenm.201902343 Yue, 2019, Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries, Energy Storage Mater., 21, 180, 10.1016/j.ensm.2018.12.007 Zhang, 2018, A facile annealing strategy for achieving in situ controllable Cu2O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes, J. Mater. Chem. A, 6, 18444, 10.1039/C8TA07612J Fu, 2021, Lithophilic and antioxidative copper current collectors for highly stable lithium metal batteries, Adv. Funct. Mater., 31, 2009805, 10.1002/adfm.202009805 Gao, 2021, Stamping flexible Li alloy anodes, Adv. Mater., 33, 2005305, 10.1002/adma.202005305 Jia, 2020, Low-temperature fusion fabrication of Li-Cu alloy anode with in situ formed 3D framework of inert LiCux nanowires for excellent Li storage performance, Sci. Bull., 65, 1907, 10.1016/j.scib.2020.07.012 Shek, 1990, A soft X-ray study of the interaction of oxygen with Li, Surf. Sci., 234, 324, 10.1016/0039-6028(90)90564-O 2013 Etxebarria, 2020, Work function evolution in Li anode processing, Adv. Energy Mater., 10, 2000520, 10.1002/aenm.202000520 Wan, 2020, Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode, Nat. Commun., 11, 829, 10.1038/s41467-020-14550-3 Wang, 2019, An interconnected channel-like framework as host for lithium metal composite anodes, Adv. Energy Mater., 9, 1802720, 10.1002/aenm.201802720 Liu, 2019, In situ quantification of interphasial chemistry in Li-ion battery, Nat. Nanotechnol., 14, 50, 10.1038/s41565-018-0284-y Yang, 2016, Formation mechanism of the solid electrolyte interphase in different ester electrolytes, J. Mater. Chem. A, 9, 19664, 10.1039/D1TA02615A Sun, 2021, Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive, Angew. Chem. Int. Ed., 60, 18247, 10.1002/anie.202105756