Lithium Metal Anode Materials Design: Interphase and Host
Tóm tắt
Li metal is the ultimate anode choice due to its highest theoretical capacity and lowest electrode potential, but it is far from practical applications with its poor cycle lifetime. Recent research progresses show that materials designs of interphase and host structures for Li metal are two effective ways addressing the key issues of Li metal anodes. Despite the exciting improvement on Li metal cycling capability, problems still exist with these methodologies, such as the deficient long-time cycling stability of interphase materials and the accelerated Li corrosion for high surface area three-dimensional composite Li anodes. As a result, Coulombic efficiency of Li metal is still not sufficient for full-cell cycling. In the near future, an interphase protected three-dimensional composite Li metal anode, combined with high performance novel electrolytes might be the ultimate solution. Besides, nanoscale characterization technologies are also vital for guiding future Li metal anode designs.
Tài liệu tham khảo
Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
Lin, D.C., Liu, Y.Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
Liu, Y.Y., Zhou, G.M., Liu, K., et al.: Design of complex nanomaterials for energy storage: past success and future opportunity. Acc. Chem. Res. 50, 2895–2905 (2017). https://doi.org/10.1021/acs.accounts.7b00450
Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g
Shi, Q.W., Zhong, Y.R., Wu, M., et al.: High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl. Acad. Sci. USA 115, 5676–5680 (2018). https://doi.org/10.1073/pnas.1803634115
Liu, Y.Y., Lin, D.C., Li, Y.Z., et al.: Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018). https://doi.org/10.1038/s41467-018-06077-5
Li, W.Y., Yao, H.B., Yan, K., et al.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). https://doi.org/10.1038/ncomms8436
Cheng, X.B., Yan, C., Chen, X., et al.: Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2, 258–270 (2017). https://doi.org/10.1016/j.chempr.2017.01.003
Yan, C., Cheng, X.B., Tian, Y., et al.: Lithium metal anodes: dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, 1870181 (2018). https://doi.org/10.1002/adma.201870181
Zhang, X.Q., Cheng, X.B., Chen, X., et al.: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989
Ma, L., Kim, M.S., Archer, L.A.: Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 29r, 4181–4189 (2017). https://doi.org/10.1021/acs.chemmater.6b03687
Lu, Y.Y., Tu, Z.Y., Archer, L.A.: Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014). https://doi.org/10.1038/nmat4041
Ding, F., Xu, W., Graff, G.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). https://doi.org/10.1021/ja312241y
Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
Zheng, G.Y., Lee, S.W., Liang, Z., et al.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014). https://doi.org/10.1038/nnano.2014.152
Yan, K., Lee, H.W., Gao, T., et al.: Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014). https://doi.org/10.1021/nl503125u
Lin, D.C., Liu, Y.Y., Chen, W., et al.: Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon. Nano Lett. 17, 3731–3737 (2017). https://doi.org/10.1021/acs.nanolett.7b01020
Zhao, J., Liao, L., Shi, F.F., et al.: Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139, 11550–11558 (2017). https://doi.org/10.1021/jacs.7b05251
Yan, C., Cheng, X.B., Yao, Y.X., et al.: An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, 1804461 (2018). https://doi.org/10.1002/adma.201804461
Li, Y.B., Sun, Y.M., Pei, A., et al.: Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Cent. Sci. 4, 97–104 (2018). https://doi.org/10.1021/acscentsci.7b00480
Li, N.W., Yin, Y.X., Yang, C.P., et al.: An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016). https://doi.org/10.1002/adma.201504526
Kozen, A.C., Lin, C.F., Pearse, A.J., et al.: Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015). https://doi.org/10.1021/acsnano.5b02166
Song, J., Lee, H., Choo, M.J., et al.: Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 5, 14458 (2015). https://doi.org/10.1038/srep14458
Li, N.W., Shi, Y., Yin, Y.X., et al.: Inside cover: a flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1422 (2018). https://doi.org/10.1002/anie.201713193
Belov, D.G., Yarmolenko, O.V., Peng, A., et al.: Lithium surface protection by polyacetylene in situ polymerization. Synth. Met. 156, 745–751 (2006). https://doi.org/10.1016/j.synthmet.2006.04.006
Liu, Y.Y., Lin, D.C., Yuen, P.Y., et al.: An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29, 1605531 (2017). https://doi.org/10.1002/adma.201605531
Lin, D.C., Liu, Y.Y., Liang, Z., et al.: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016). https://doi.org/10.1038/nnano.2016.32
Wang, H.S., Lin, D.C., Xie, J., et al.: An interconnected channel-like framework as host for lithium metal composite anodes. Adv. Energy Mater. 9, 1802720 (2019). https://doi.org/10.1002/aenm.201802720
Liu, Y.Y., Lin, D.C., Liang, Z., et al.: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016). https://doi.org/10.1038/ncomms10992
Zhang, C.Y., Liu, S., Li, G.J., et al.: Lithium-metal anodes: incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv. Mater. 30, 1870248 (2018). https://doi.org/10.1002/adma.201870248
Yan, K., Lu, Z.D., Lee, H.W., et al.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
Wang, J.Y., Wang, H.S., Xie, J., et al.: Fundamental study on the wetting property of liquid lithium. Energy Storage Mater. 14, 345–350 (2018). https://doi.org/10.1016/j.ensm.2018.05.021
Guan, X.Z., Wang, A.X., Liu, S., et al.: Controlling nucleation in lithium metal anodes. Small 14, 1801423 (2018). https://doi.org/10.1002/smll.201801423
Yang, C.P., Yin, Y.X., Zhang, S.F., et al.: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058
Zhang, R., Cheng, X.B., Zhao, C.Z., et al.: Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2016). https://doi.org/10.1002/adma.201504117
Wang, H.S., Li, Y.Z., Li, Y.B., et al.: Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy. Nano Lett. 19, 1326–1335 (2019). https://doi.org/10.1021/acs.nanolett.8b04906
Zhang, R., Chen, X.R., Chen, X., et al.: Inside cover: lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7682 (2017). https://doi.org/10.1002/anie.201704344
Chen, X., Chen, X.R., Hou, T.Z., et al.: Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 5, eaau7728 (2019). https://doi.org/10.1126/sciadv.aau7728
Wang, A.X., Zhang, X.Y., Yang, Y.W., et al.: Horizontal centripetal plating in the patterned voids of Li/graphene composites for stable lithium-metal anodes. Chem 4, 2192–2200 (2018). https://doi.org/10.1016/j.chempr.2018.06.017
Zhang, R., Chen, X., Shen, X., et al.: Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–777 (2018). https://doi.org/10.1016/j.joule.2018.02.001
Sun, Y.M., Zheng, G.Y., Seh, Z.W., et al.: Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 1, 287–297 (2016). https://doi.org/10.1016/j.chempr.2016.07.009
Zhang, Y., Liu, B.Y., Hitz, E., et al.: A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 10, 1356–1365 (2017). https://doi.org/10.1007/s12274-017-1461-2
Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014). https://doi.org/10.1021/cr500003w
Wang, H.S., Lin, D.C., Liu, Y.Y., et al.: Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework. Sci. Adv. 3, e1701301 (2017). https://doi.org/10.1126/sciadv.1701301
Xie, J., Wang, J.Y., Lee, H.R., et al.: Engineering stable interfaces for three-dimensional lithium metal anodes. Sci. Adv. 4, eaat5168 (2018). https://doi.org/10.1126/sciadv.aat5168
Qian, J.F., Henderson, W.A., Xu, W., et al.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). https://doi.org/10.1038/ncomms7362
Chen, S.R., Zheng, J.M., Yu, L., et al.: High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018). https://doi.org/10.1016/j.joule.2018.05.002
Fan, X.L., Chen, L., Ji, X., et al.: Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
Suo, L.M., Xue, W.J., Gobet, M., et al.: Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA 115, 1156–1161 (2018). https://doi.org/10.1073/pnas.1712895115
Li, Y.Z., Li, Y.B., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017). https://doi.org/10.1126/science.aam6014