Lithium Metal Anode Materials Design: Interphase and Host

Electrochemical Energy Reviews - Tập 2 - Trang 509-517 - 2019
Hansen Wang1, Yayuan Liu1, Yuzhang Li1, Yi Cui1,2
1Department of Materials Science and Engineering, Stanford University, Stanford, USA
2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, USA

Tóm tắt

Li metal is the ultimate anode choice due to its highest theoretical capacity and lowest electrode potential, but it is far from practical applications with its poor cycle lifetime. Recent research progresses show that materials designs of interphase and host structures for Li metal are two effective ways addressing the key issues of Li metal anodes. Despite the exciting improvement on Li metal cycling capability, problems still exist with these methodologies, such as the deficient long-time cycling stability of interphase materials and the accelerated Li corrosion for high surface area three-dimensional composite Li anodes. As a result, Coulombic efficiency of Li metal is still not sufficient for full-cell cycling. In the near future, an interphase protected three-dimensional composite Li metal anode, combined with high performance novel electrolytes might be the ultimate solution. Besides, nanoscale characterization technologies are also vital for guiding future Li metal anode designs.

Tài liệu tham khảo

Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a Lin, D.C., Liu, Y.Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16 Liu, Y.Y., Zhou, G.M., Liu, K., et al.: Design of complex nanomaterials for energy storage: past success and future opportunity. Acc. Chem. Res. 50, 2895–2905 (2017). https://doi.org/10.1021/acs.accounts.7b00450 Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g Shi, Q.W., Zhong, Y.R., Wu, M., et al.: High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl. Acad. Sci. USA 115, 5676–5680 (2018). https://doi.org/10.1073/pnas.1803634115 Liu, Y.Y., Lin, D.C., Li, Y.Z., et al.: Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018). https://doi.org/10.1038/s41467-018-06077-5 Li, W.Y., Yao, H.B., Yan, K., et al.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). https://doi.org/10.1038/ncomms8436 Cheng, X.B., Yan, C., Chen, X., et al.: Implantable solid electrolyte interphase in lithium-metal batteries. Chem 2, 258–270 (2017). https://doi.org/10.1016/j.chempr.2017.01.003 Yan, C., Cheng, X.B., Tian, Y., et al.: Lithium metal anodes: dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, 1870181 (2018). https://doi.org/10.1002/adma.201870181 Zhang, X.Q., Cheng, X.B., Chen, X., et al.: Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989 Ma, L., Kim, M.S., Archer, L.A.: Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 29r, 4181–4189 (2017). https://doi.org/10.1021/acs.chemmater.6b03687 Lu, Y.Y., Tu, Z.Y., Archer, L.A.: Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014). https://doi.org/10.1038/nmat4041 Ding, F., Xu, W., Graff, G.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). https://doi.org/10.1021/ja312241y Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115 Zheng, G.Y., Lee, S.W., Liang, Z., et al.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014). https://doi.org/10.1038/nnano.2014.152 Yan, K., Lee, H.W., Gao, T., et al.: Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014). https://doi.org/10.1021/nl503125u Lin, D.C., Liu, Y.Y., Chen, W., et al.: Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon. Nano Lett. 17, 3731–3737 (2017). https://doi.org/10.1021/acs.nanolett.7b01020 Zhao, J., Liao, L., Shi, F.F., et al.: Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139, 11550–11558 (2017). https://doi.org/10.1021/jacs.7b05251 Yan, C., Cheng, X.B., Yao, Y.X., et al.: An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, 1804461 (2018). https://doi.org/10.1002/adma.201804461 Li, Y.B., Sun, Y.M., Pei, A., et al.: Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Cent. Sci. 4, 97–104 (2018). https://doi.org/10.1021/acscentsci.7b00480 Li, N.W., Yin, Y.X., Yang, C.P., et al.: An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016). https://doi.org/10.1002/adma.201504526 Kozen, A.C., Lin, C.F., Pearse, A.J., et al.: Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015). https://doi.org/10.1021/acsnano.5b02166 Song, J., Lee, H., Choo, M.J., et al.: Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 5, 14458 (2015). https://doi.org/10.1038/srep14458 Li, N.W., Shi, Y., Yin, Y.X., et al.: Inside cover: a flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1422 (2018). https://doi.org/10.1002/anie.201713193 Belov, D.G., Yarmolenko, O.V., Peng, A., et al.: Lithium surface protection by polyacetylene in situ polymerization. Synth. Met. 156, 745–751 (2006). https://doi.org/10.1016/j.synthmet.2006.04.006 Liu, Y.Y., Lin, D.C., Yuen, P.Y., et al.: An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29, 1605531 (2017). https://doi.org/10.1002/adma.201605531 Lin, D.C., Liu, Y.Y., Liang, Z., et al.: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016). https://doi.org/10.1038/nnano.2016.32 Wang, H.S., Lin, D.C., Xie, J., et al.: An interconnected channel-like framework as host for lithium metal composite anodes. Adv. Energy Mater. 9, 1802720 (2019). https://doi.org/10.1002/aenm.201802720 Liu, Y.Y., Lin, D.C., Liang, Z., et al.: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016). https://doi.org/10.1038/ncomms10992 Zhang, C.Y., Liu, S., Li, G.J., et al.: Lithium-metal anodes: incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv. Mater. 30, 1870248 (2018). https://doi.org/10.1002/adma.201870248 Yan, K., Lu, Z.D., Lee, H.W., et al.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10 Wang, J.Y., Wang, H.S., Xie, J., et al.: Fundamental study on the wetting property of liquid lithium. Energy Storage Mater. 14, 345–350 (2018). https://doi.org/10.1016/j.ensm.2018.05.021 Guan, X.Z., Wang, A.X., Liu, S., et al.: Controlling nucleation in lithium metal anodes. Small 14, 1801423 (2018). https://doi.org/10.1002/smll.201801423 Yang, C.P., Yin, Y.X., Zhang, S.F., et al.: Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058 Zhang, R., Cheng, X.B., Zhao, C.Z., et al.: Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2016). https://doi.org/10.1002/adma.201504117 Wang, H.S., Li, Y.Z., Li, Y.B., et al.: Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy. Nano Lett. 19, 1326–1335 (2019). https://doi.org/10.1021/acs.nanolett.8b04906 Zhang, R., Chen, X.R., Chen, X., et al.: Inside cover: lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7682 (2017). https://doi.org/10.1002/anie.201704344 Chen, X., Chen, X.R., Hou, T.Z., et al.: Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 5, eaau7728 (2019). https://doi.org/10.1126/sciadv.aau7728 Wang, A.X., Zhang, X.Y., Yang, Y.W., et al.: Horizontal centripetal plating in the patterned voids of Li/graphene composites for stable lithium-metal anodes. Chem 4, 2192–2200 (2018). https://doi.org/10.1016/j.chempr.2018.06.017 Zhang, R., Chen, X., Shen, X., et al.: Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–777 (2018). https://doi.org/10.1016/j.joule.2018.02.001 Sun, Y.M., Zheng, G.Y., Seh, Z.W., et al.: Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem 1, 287–297 (2016). https://doi.org/10.1016/j.chempr.2016.07.009 Zhang, Y., Liu, B.Y., Hitz, E., et al.: A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 10, 1356–1365 (2017). https://doi.org/10.1007/s12274-017-1461-2 Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014). https://doi.org/10.1021/cr500003w Wang, H.S., Lin, D.C., Liu, Y.Y., et al.: Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework. Sci. Adv. 3, e1701301 (2017). https://doi.org/10.1126/sciadv.1701301 Xie, J., Wang, J.Y., Lee, H.R., et al.: Engineering stable interfaces for three-dimensional lithium metal anodes. Sci. Adv. 4, eaat5168 (2018). https://doi.org/10.1126/sciadv.aat5168 Qian, J.F., Henderson, W.A., Xu, W., et al.: High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). https://doi.org/10.1038/ncomms7362 Chen, S.R., Zheng, J.M., Yu, L., et al.: High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018). https://doi.org/10.1016/j.joule.2018.05.002 Fan, X.L., Chen, L., Ji, X., et al.: Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017 Suo, L.M., Xue, W.J., Gobet, M., et al.: Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA 115, 1156–1161 (2018). https://doi.org/10.1073/pnas.1712895115 Li, Y.Z., Li, Y.B., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017). https://doi.org/10.1126/science.aam6014