Độ dẫn ion lithium của các polyme dựa trên polystyren sunfonat và polymethylpentene bổ sung bằng dung môi hữu cơ

Pleiades Publishing Ltd - Tập 13 - Trang 256-260 - 2018
D. Yu. Voropaeva1,2,3, D. V. Golubenko1,3, S. A. Novikova1, A. B. Yaroslavtsev1,2,4
1Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2Moscow State University, Moscow, Russia
3Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
4Higher School of Economics, Moscow, Russia

Tóm tắt

Các màng trao đổi ion dựa trên polymethylpentene và polystyren sunfonat với các mức độ grafting khác nhau đã được chế tạo. Sự solvat hóa và khả năng di động của ion lithium phụ thuộc vào thành phần của các dung môi hữu cơ ban đầu đã được nghiên cứu. Độ dẫn ion cao nhất ở nhiệt độ phòng (30°C) đạt được cho các màng chứa dimethylsulfoxide (σ = 1,31 × 10–4 S/cm cho màng có GD = 78%). Các màng chứa dimethylformamide được đặc trưng bởi một thành phần pha không đổi trong một khoảng nhiệt độ rộng và độ dẫn ion cao nhất ở nhiệt độ thấp (σ = 9 × 10–6 S/cm ở –20°C cho polymer có GD = 78%).

Từ khóa

#iodine #polystyrene sulfonic acid #lithium ion #ionic conductivity #organic solvent

Tài liệu tham khảo

E. Quartarone and P. Mustarelli, “Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives,” Chem. Soc. Rev. 40, 2525–2540 (2011). A. B. Yaroslavtsev, “Solid electrolytes: main prospects of research and development,” Russ. Chem. Rev. 85, 1255–1276 (2016). Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, and Y. Huang, “Promises, challenges and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries,” Adv. Mater. 30, 1705702 (2018). I. A. Stenina, I. Y. Pinus, A. I. Rebrov, and A. B. Yaroslavtsev, “Lithium and hydrogen ions transport in materials with NASICON structure,” Solid State Ionics 175, 445–449 (2004). Z. Jian, Y. S. Hu, X. Ji, and W. Chen, “NASICONstructured materials for energy storage,” Adv. Mater. 29, 1601925 (2017). J. F. Nonemacher, C. Hüter, H. Zheng, J. Malzbender, M. Kruger, R. Spatschek, and M. Finsterbusch, “Microstructure and properties investigation of garnet structured Li7La3Zr2O12 as electrolyte for all-solidstate batteries,” Solid State Ionics 321, 126–134 (2018). C. Li, Z. Xi, D. Guo, X. Chen, L. Yin, “Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries,” Smal. 14, 1701986 (2018). Y. Xue and D. J. Quesnel, “Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes,” RSC Adv. 6, 7504–7510 (2016). H. Gao, W. Zhou, K. Park, and J. B. Goodenough, “A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte,” Adv. Energy Mater. 6, 1600467 (2016). L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, and L. Chen, “All solid-state polymer electrolytes for high-performance lithium ion batteries,” Energy Storage Mater. 5, 139–164 (2016). B. Sun, J. Mindemark, K. Edstrom, and D. Brandell, “Polycarbonate-based solid polymer electrolytes for Li-ion batteries,” Solid State Ionics 262, 738–742 (2014). M. Armand, “Polymer electrolytes—an overview,” Solid State Ionics 9–10, 745–754 (1983). V. di Noto, S. Lavina, G. A. Giffin, E. Negro, and B. Scrosati, “Polymer electrolytes: present, past and future,” Electrochim. Acta 57, 4–13 (2011). K. Xu, “Nonaqueous liquid electrolytes for lithiumbased rechargeable batteries,” Chem. Rev. 104, 4303–4417 (2005). A. Ghosh and P. Kofinas, “Nanostructured block copolymer dry electrolyte,” J. Electrochem. Soc. 151, A428–A431 (2008). J. F. Snyder, M. A. Ratner, and D. F. Shriver, “Ion conductivity of comb polysiloxane polyelectrolytes containing oligoether and perfluoroether sidechains,” J. Electrochem. Soc. 150, A1090–A1094 (2003). P. Han, Y. Zhu, and J. Liu, “An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method,” J. Power Sources 284, 459–465 (2015). Y. Liu, Z. Cai, L. Tan, and L. Li, “Ion exchange membranes as electrolyte for high performance li-ion batteries,” Energy Environ. Sci 5, 9007–9013 (2012). Z. Cai, Y. Liu, S. Liu, L. Li, and Y. Zhang, “High performance of lithium-ion polymer battery based on nonaqueous lithiated perfluorinated sulfonic ion-exchange membranes,” Energy Environ. Sci. 5, 5690–5693 (2012). P. Aldebert, M. Guglieimi, and M. Pineri, “Ionic conductivity of bulk, gels and solutions of perfluorinated ionomer membranes,” Polym. J. 23, 399–406 (1991). M. Doyle, M. E. Lewittes, M. G. Roelofs, S. A. Perusich, and R. E. Lowrey, “Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties,” J. Membr. Sci. 184, 257–273 (2001). J. Gao, C. Sun, L. Xu, J. Chen, C. Wang, D. Guo, and H. Chen, “Lithiated nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode,” J. Power Sources 382, 179–189 (2018). E. A. Sanginov, E. Yu. Evshchik, R. R. Kayumov, and Yu. A. Dobrovol’skii, “Lithium-ion conductivity of the nafion membrane swollen in organic solvents,” Russ. J. Electrochem. 51, 986–990 (2015). A. I. Karelin, R. R. Kayumov, and Yu. A. Dobrovol’skii, “Structure of lithium ion-conducting polymer membranes based on nafion plasticized with dimethylsulfoxide,” Pet. Chem. 56, 1020–1026 (2017). M. Nasef, “Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films,” Prog. Polym. Sci. 29, 499–561 (2004). T. Zhou, R. Shao, S. Chen, X. He, J. Qiao, and J. Zhang, “A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells,” J. Power Sources 293, 946–975 (2015). E. Y. Safronova, D. V. Golubenko, N. V. Shevlyakova, M. G. D’yakova, V. A. Tverskoi, L. Dammak, D. Grande, and A. B. Yaroslavtsev, “New cationexchange membranes based on cross-linked sulfonated polystyrene and polyethylene for power generation systems,” J. Membr. Sci. 515, 196–203 (2016). D. V. Golubenko, E. Y. Safronova, A. B. Ilyin, N. V. Shevlyakova, V. A. Tverskoi, G. Pourcelly, and A. B. Yaroslavtsev, “Water state and ionic conductivity of grafted ion exchange membranes based on polyethylene and sulfonated polystyrene,” Mendeleev Commun. 27, 380–381 (2017). Z. Xu, J. Wang, L. Shen, D. Men, and Y. Xu, “Microporous polypropylene hollow fiber membrane. Part I. Surface modification by the graft polymerization of acrylic acid,” J. Membr. Sci. 196, 221–229 (2002). Y. Ding, X. Shen, J. Zeng, X. Wang, L. Peng, P. Zhang, and J. Zhao, “Pre-irradiation grafted single lithiumion conducting polymer electrolyte based on poly(vinylidene fluoride),” Solid State Ionics 323, 16–24 (2018). N. Walsby, F. Sundholm, T. Kallio, and G. Sundholm, “Radiation-grafted ion-exchange membranes: influence of the initial matrix on the synthesis and structure,” J. Polym. Sci., Part A 39, 3008–3017 (2001). J. A. Horsfall and K. V. Lovell, “Synthesis and characterization of sulfonic acid-containing ion exchange membranes based on hydrocarbon and fluorocarbon polymers,” Eur. Polym. J. 38, 1671–1682 (2002). D. V. Golubenko and A. B. Yaroslavtsev, “New approach to the preparation of grafted ion exchange membranes based on UV-oxidized polymer films and sulfonated polystyrene,” Mendeleev Commun. 27, 572–573 (2017). V. Gutmann, “Empirical parameters for donor and acceptor properties of solvents,” Electrochim. Acta 21, 661–670 (1976). E. Pasgreta, R. Puchta, M. Galle, N. van Eikema Hommes, A. Zahl, and R. van Eldik, “Ligand-exchange processes on solvated lithium cations: DMSO and water/DMSO mixtures,” ChemPhysChem 8, 1315–1320 (2007). V. I. Volkov, E. V. Volkov, S. V. Timofeev, E. A. Sanginov, A. A. Pavlov, E. Yu. Safronova, I. A. Stenina, and A. B. Yaroslavtsev, “Diffusion mobility of alkali metals in perfluorinated sulfocationic and carboxylic membranes as probed by 1H, 7Li, 23Na, and 133Cs NMR spectroscopy,” Russ. J. Inorg. Chem. 55, 318–324 (2010). D. Yu. Voropaeva, S. A. Novikova, T. L. Kulova, and A. B. Yaroslavtsev, “Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents,” Ionics 24, 1685–1692 (2018). V. I. Volkov and A. A. Marinin, “NMR methods for studying ion and molecular transport in polymer electrolytes,” Russ. Chem. Rev. 82, 248–272 (2013).