Literature Review on Transfer Learning for Human Activity Recognition Using Mobile and Wearable Devices with Environmental Technology

SN Computer Science - Tập 1 Số 2 - 2020
Netzahualcóyotl Hernández1, Jens Lundström2, Jesús Favela3, Ian McChesney1, Bert Arnrich4
1Ulster University, Newtownabbey, Belfast, Northern Ireland, UK
2Raytelligence AB, Klammerdammsgatan, Halmstad, Sweden
3CICESE, Ensenada, Baja California Mexico
4Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aggarwal JK, Xia L. Human activity recognition from 3D data: a review. Pattern Recognit Lett. 2014;. https://doi.org/10.1016/j.patrec.2014.04.011.

Alam MAU, Roy N. Unseen activity recognitions: a hierarchical active transfer learning approach. Proc Int Conf Distrib Comput Syst. 2017;. https://doi.org/10.1109/ICDCS.2017.264.

Appelboom G, Camacho E, Abraham ME, Bruce SS, Dumont ELP, Zacharia BE, D’Amico R, Slomian J, Reginster JY, Bruyère O, Sander CE. Smart wearable body sensors for patient self-assessment and monitoring. Arch Public Health. 2014;. https://doi.org/10.1186/2049-3258-72-28.

Bashir SA, Petrovski A, Doolan D. UDetect: unsupervised concept change detection for mobile activity recognition. In: Proceedings of the 14th international conference on advances in mobile computing and multi media (MoMM ’16). New York: ACM; 2016. p. 20–27. https://doi.org/10.1145/3007120.3007144.

Benedetti F, Carlino E, Piedimonte A. Increasing uncertainty in CNS clinical trials: the role of placebo, nocebo, and Hawthorne effects. Lancet Neurol. 2016;. https://doi.org/10.1016/S1474-4422(16)00066-1.

Benini L, Farella E, Guiducci C. Wireless sensor networks: enabling technology for ambient intelligence. Microelectron J. 2006;37(12):1639–49. https://doi.org/10.1016/j.mejo.2006.04.021.

Berlin E, Van Laerhoven K. Detecting leisure activities with dense motif discovery. In: UbiComp’12 - Proceedings of the 2012 ACM Conference on Ubiquitous Computing. 2012. https://doi.org/10.1145/2370216.2370257.

Bieber, G. et al. Sensor requirements for activity recognition on smart watches. In: ACM International Conference Proceeding Series. 2013. https://doi.org/10.1145/2504335.2504407.

Boualia SN, Essoukri AN. Pose-based human activity recognition: a review. In: 2019 15th international wireless communications mobile computing conference (IWCMC). 2019. p. 1468–1475. https://doi.org/10.1109/IWCMC.2019.8766694.

Campbell JP, Maxey VA, Watson WA. Hawthorne effect: implications for prehospital research. Ann Emerg Med. 1995;. https://doi.org/10.1016/S0196-0644(95)70009-9.

Cao L, Liu Z, Huang TS. Cross-dataset action detection. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. 2010. https://doi.org/10.1109/CVPR.2010.5539875.

Capponi A, Fiandrino C, Kantarci B, Foschini L, Kliazovich D, Bouvry P. A survey on mobile crowdsensing systems: challenges, solutions, and opportunities. IEEE Commun Surv Tutor. 2019;21(3):2419–65. https://doi.org/10.1109/COMST.2019.2914030.

Carpenter GA, Grossberg S, Reynolds JH. ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Netw. 1991;. https://doi.org/10.1016/0893-6080(91)90012-T.

Chen L, Nugent CD, Wang H. A knowledge-driven approach to activity recognition in smart homes. IEEE Trans Knowl Data Eng. 2012;. https://doi.org/10.1109/TKDE.2011.51.

Chikhaoui B, Wang S, Pigot H. ADR-SPLDA: activity discovery and recognition by combining sequential patterns and latent Dirichlet allocation. Pervasive Mob Comput. 2012;8(6):845–62. https://doi.org/10.1016/j.pmcj.2012.08.004.

Cook D, Feuz KD, Krishnan NC. Transfer learning for activity recognition: a survey. Knowl Inf Syst. 2013;36(3):537–56. https://doi.org/10.1007/s10115-013-0665-3.

Dhillon JK, Chandni, Kushwaha AKS. A recent survey for human activity recognition based on deep learning approach. In: 2017 fourth international conference on image information processing (ICIIP). 2017. p. 1–6. https://doi.org/10.1109/ICIIP.2017.8313715.

Dimitrievski A, Zdravevski E, Lameski P, Trajkovik V. A survey of ambient assisted living systems: challenges and opportunities. In: 2016 IEEE 12th international conference on intelligent computer communication and processing (ICCP). 2016. p. 49–53. https://doi.org/10.1109/ICCP.2016.7737121.

Ding R, Li X, Nie L, Li J, Si X, Chu D, Liu G, Zhan D. Empirical study and improvement on deep transfer learning for human activity recognition. Sensors. 2019;19:1. https://doi.org/10.3390/s19010057.

Du X, Farrahi K, Niranjan M. Transfer learning across human activities using a cascade neural network architecture. In: Proceedings of the 23rd international symposium on wearable computers (ISWC ’19). New York: Association for Computing Machinery; 2019. p. 35–44. https://doi.org/10.1145/3341163.3347730.

Feuz KD, Cook DJ. Collegial activity learning between heterogeneous sensors. Knowl Inf Syst. 2017;. https://doi.org/10.1007/s10115-017-1043-3.

Fortin-Simard D, Bilodeau JS, Bouchard K, Gaboury S, Bouchard B, Bouzouane A. Exploiting passive RFID technology for activity recognition in smart homes. IEEE Intell Syst. 2015;. https://doi.org/10.1109/MIS.2015.18.

Francis L. Unsupervised learning. In: Predictive Modeling Applications in Actuarial Science: Volume I: Predictive Modeling Techniques. 2014. https://doi.org/10.1017/CBO9781139342674.012.

Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A. A survey on concept drift adaptation. Comput Surv. 2014;. https://doi.org/10.1145/2523813.

Gupta A, Priyadarshini J. Smart monitoring of automatic teller machine—a survey. In: Nath V, Mandal JK, editors. Proceedings of the third international conference on microelectronics, computing and communication systems. Singapore: Springer Singapore; 2019. p. 109–15.

Hachiya H, Sugiyama M, Ueda N. Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition. Neurocomputing. 2012;. https://doi.org/10.1016/j.neucom.2011.09.016.

Hu DH, Yang Q. Transfer learning for activity recognition via sensor mapping. In: IJCAI international joint conference on artificial intelligence. 2011. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-328.

Hu L, Chen Y, Wang S, Wang J, Shen J, Jiang X, Shen Z. Less annotation on personalized activity recognition using context data. In: Proceedings—13th IEEE international conference on ubiquitous intelligence and computing, 13th IEEE international conference on advanced and trusted computing, 16th IEEE international conference on scalable computing and communications, IEEE international conference on cloud and big data computing, IEEE international conference on internet of people and IEEE smart world congress and workshops, UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld 2016. 2017. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0066.

Huynh T, Fritz M, Schiele B. Discovery of activity patterns using topic models. In: UbiComp 2008 - Proceedings of the 10th International Conference on Ubiquitous Computing. 2008. https://doi.org/10.1145/1409635.1409638.

Jain AK, Murty MN, Flynn PJ. Data clustering: a review. Comput Surv. 1999. https://doi.org/10.1145/331499.331504.

Jiang H, Cai C, Ma X, Yang Y, Liu J. Smart home based on WiFi sensing: a survey. IEEE Access. 2018;2018(6):13317–25. https://doi.org/10.1109/ACCESS.2018.2812887.

Jobanputra C, Bavishi J, Doshi N. Human activity recognition: a survey. Proc Comput Sci. 2019;155(2019):698–703. https://doi.org/10.1016/j.procs.2019.08.100. The 16th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2019), The 14th International Conference on Future Networks and Communications (FNC-2019),The 9th International Conference on Sustainable Energy Information Technology.

Kazemi L, Shahabi C. GeoCrowd: enabling query answering with spatial crowdsourcing. In: Proc. 20th ACM int. conf. adv. geogr. inf. syst. (SIGSPATIAL). 2012. https://doi.org/10.1145/2424321.2424346.

Kwon Y, Kang K, Bae C. Unsupervised learning for human activity recognition using smartphone sensors. Expert Syst Appl. 2014;. https://doi.org/10.1016/j.eswa.2014.04.037.

Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT. A survey of mobile phone sensing. IEEE Commun Mag. 2010;48(9):140–50. https://doi.org/10.1109/MCOM.2010.5560598.

Lara ÓD, Labrador MA. A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutor. 2013;. https://doi.org/10.1109/SURV.2012.110112.00192.

Falk Leichsenring. Randomized controlled versus naturalistic studies: a new research agenda. Bull Menninger Clinic. 2004;. https://doi.org/10.1521/bumc.68.2.137.35952.

Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and their applications. Neurocomputing. 2017;. https://doi.org/10.1016/j.neucom.2016.12.038.

Maekawa T, Nakai D, Ohara K, Namioka Y. Toward practical factory activity recognition: unsupervised understanding of repetitive assembly work in a factory. In: UbiComp 2016. 2016. https://doi.org/10.1145/2971648.2971721.

Michalski RS. A theory and methodology of inductive learning. Artif Intell. 1983;. https://doi.org/10.1016/0004-3702(83)90016-4.

Morales FJO, Roggen D. Deep convolutional feature transfer across mobile activity recognition domains, sensor modalities and locations. In: Proceedings of the 2016 ACM international symposium on wearable computers (ISWC ’16). New York: Association for Computing Machinery; 2016. p. 92–9. https://doi.org/10.1145/2971763.2971764.

Okoli C, Schabram K. A guide to conducting a systematic literature review of information systems research. SSRN Electron. J. 2012. https://doi.org/10.2139/ssrn.1954824.

Pan SJ, Yang Q. A survey on transfer learning. 2010. https://doi.org/10.1109/TKDE.2009.191.

Qiang Y, Pan SJ. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–59.

Rawassizadeh R, Price BA, Petre M. Wearables: has the age of smartwatches finally arrived? Commun ACM. 2014;. https://doi.org/10.1145/2629633.

Riboni D et al. Unsupervised recognition of interleaved activities of daily living through ontological and probabilistic reasoning. In: UbiComp 2016 - Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2016. https://doi.org/10.1145/2971648.2971691.

Rohrbach M, Ebert S, Schiele B. Transfer learning in a transductive setting. In: Advances in Neural Information Processing Systems. 2013.

Saeedi R, Ghasemzadeh H, Gebremedhin AH. Transfer learning algorithms for autonomous reconfiguration of wearable systems. In: Proceedings—2016 IEEE international conference on big data, big data 2016. 2016. https://doi.org/10.1109/BigData.2016.7840648.

Sánchez D, Tentori M, Favela J. Activity recognition for the smart hospital. IEEE Intell Syst. 2008;. https://doi.org/10.1109/MIS.2008.18.

Seiter J, Chiu WC, Fritz M, Amft O, Tröster G. Joint segmentation and activity discovery using semantic and temporal priors. In: 2015 IEEE international conference on pervasive computing and communications, PerCom 2015. 2015. https://doi.org/10.1109/PERCOM.2015.7146511.

Sjøberg DIK, Hannay JE, Hansen O, Kampenes VB, Karahasanović A, Liborg NK, Rekdal AC. A survey of controlled experiments in software engineering. IEEE Trans Softw Eng. 2005;. https://doi.org/10.1109/TSE.2005.97.

Stikic M, Larlus D, Schiele B. Multi-graph based semi-supervised learning for activity recognition. In: 2009 international symposium on wearable computers. 2009. p. 85–92. https://doi.org/10.1109/ISWC.2009.24.

Stikic M, Van Laerhoven K, Schiele B. Exploring semi-supervised and active learning for activity recognition. In: Proceedings—international symposium on wearable computers, ISWC. 2008. https://doi.org/10.1109/ISWC.2008.4911590.

Storm FA, Heller BW, Mazzà C. Step detection and activity recognition accuracy of seven physical activity monitors. PLoS One. 2015;. https://doi.org/10.1371/journal.pone.0118723.

Su X, Tong H, Ji P. Activity recognition with smartphone sensors. Tsinghua Sci Technol. 2014;. https://doi.org/10.1109/TST.2014.6838194.

Suh MK, Chen CA, Woodbridge J, Tu MK, Kim JI, Nahapetian A, Evangelista LS, Sarrafzadeh M. A remote patient monitoring system for congestive heart failure. J Med Syst. 2011;. https://doi.org/10.1007/s10916-011-9733-y.

Sun S. A survey of multi-view machine learning. Neural Comput Appl. 2013;. https://doi.org/10.1007/s00521-013-1362-6.

Taraldsen K, Chastin SFM, Riphagen II, Vereijken B, Helbostad JL. Physical activity monitoring by use of accelerometer-based body-worn sensors in older adults: a systematic literature review of current knowledge and applications. Maturitas. 2012;. https://doi.org/10.1016/j.maturitas.2011.11.003.

Vahdatpour A, Amini N, Sarrafzadeh M, On-body device localization for health and medical monitoring applications. In: 2011 IEEE international conference on pervasive computing and communications, PerCom 2011. 2011. https://doi.org/10.1109/PERCOM.2011.5767593.

van Kasteren T, Englebienne G, Kröse BJA. Recognizing activities in multiple contexts using transfer learning. In: AAAI AI in eldercare symposium. 2008.

Wang J, Chen Y, Gu Y, Xiao Y, Pan H. SensoryGANs: an effective generative adversarial framework for sensor-based human activity recognition. In: Proceedings of the international joint conference on neural networks. 2018. https://doi.org/10.1109/IJCNN.2018.8489106.

Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010;. https://doi.org/10.3390/s100807772.

Yin XC, Yang C, Pei WY, Hao HW. Shallow classification or deep learning: an experimental study. In: Proceedings—international conference on pattern recognition. 2014. https://doi.org/10.1109/ICPR.2014.333.

Zhu S, Xu J, Guo H, Liu Q, Wu S, Wang H. Indoor human activity recognition based on ambient radar with signal processing and machine learning. In: 2018 IEEE international conference on communications (ICC). 2018. p. 1–6. https://doi.org/10.1109/ICC.2018.8422107.