Liquidation with self-exciting price impact

Mathematics and Financial Economics - Tập 10 - Trang 15-28 - 2015
Thomas Cayé1, Johannes Muhle-Karbe1,2
1Departement für Mathematik, ETH Zürich, Zürich, Switzerland
2Swiss Finance Institute, Geneva, Switzerland

Tóm tắt

We study optimal execution with “self-exciting” price impact, where persistent trades not only incur price impact but also increase the execution costs for successive orders. This model is motivated by an equilibrium between fundamental sellers, market makers, and end users. For risk-neutral investors, it leads to faster initial trading compared to the constant execution rate of Bertsimas and Lo [5]. For risk-averse liquidation as in Almgren and Chriss [2, 3] or Huberman and Stanzl [15], self-excitement has a moderating effect: slow liquidation is sped up, whereas fast schedules are slowed down.

Tài liệu tham khảo

Alfonsi, A., Blanc, P.: Dynamic optimal execution in a mixed-market-impact Hawkes price model. Preprint (2014) Almgren, R.F., Chriss, N.: Value under liquidation. Risk 12(12), 61–63 (1999) Almgren, R.F., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3, 5–40 (2001) Bacry, E., Iuga, A., Lasnier, M., Lehalle, C.-A.: Market impacts and the life cycle of investors orders. Preprint (2014) Bertsimas, D., Lo, A.W.: Optimal control of execution costs. J. Financ. Markets 1(1), 1–50 (1998) Brunnermeier, M.K., Pedersen, L.H.: Predatory trading. J. Financ. 60(4), 1825–1863 (2005) Carlin, B.I., Lobo, M.S., Viswanathan, S.: Episodic liquidity crises: cooperative and predatory trading. J. Financ. 62(5), 2235–2274 (2007) Garleanu, N., Pedersen, L.H.: Dynamic portfolio choice with frictions. Preprint (2013) Gatheral, J., Schied, A.: Optimal trade execution under geometric brownian motion in the Almgren and Chriss framework. Int. J. Theor. Appl. Financ. 14(03), 353–368 (2011) Gatheral, J., Schied, A.: Dynamical models of market impact and algorithms for order execution. In: Fouque, J.P., Langsam, J. (eds.) Handbook on systemic risk, pp. 579–602. Cambridge University Press, Cambridge (2013) Gökay, S., Roch, A.F., Soner, H.M.: Liquidity models in continuous and discrete time. In: Di Nunno, J. (ed.) Advanced mathematical methods for finance, pp. 333–365. Springer, Heidelberg (2011) Gomes, C., Waelbroeck, H.: Is market impact a measure of the information value of trades? Market response to liquidity vs. informed metaorders. Quant. Financ. 15(5), 773–793 (2015) Guéant, O.: Permanent market impact can be nonlinear. Preprint (2013) Huberman, G., Stanzl, W.: Price manipulation and quasi-arbitrage. Econometrica 72(4), 1247–1275 (2004) Huberman, G., Stanzl, W.: Optimal liquidity trading. Rev. Financ. 9(2), 165–200 (2005) Lorenz, C., Schied, A.: Drift dependence of optimal trade execution strategies under transient price impact. Financ. Stoch. 17(4), 743–770 (2013) Lorenz, J., Almgren, R.F.: Mean-variance optimal adaptive execution. Appl. Math. Financ. 18(5), 395–422 (2011) Madhavan, A.: Market microstructure: a survey. J. Financ. Markets 3(3), 205–258 (2000) Schied, A., Schöneborn, T.: Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets. Financ. Stoch. 13(2), 181–204 (2009) Schöneborn, T., Schied, A.: Liquidation in the face of adversity: stealth vs. sunshine trading. Preprint (2009)