Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khả năng chống lỏng của hỗn hợp cát và tro bay tăng cường bởi sợi polypropylene dưới thử nghiệm triaxial tuần hoàn kiểm soát biến dạng
Tóm tắt
Bài báo này khám phá ảnh hưởng của việc thêm hạt mịn (tro bay) và tăng cường polypropylene để giảm thiểu khả năng lỏng hóa của cát. Những phát hiện trước đây về lỏng hóa của cát dưới tác động của hạt mịn dường như là mâu thuẫn và trái ngược nhau. Nghiên cứu hiện tại cố gắng nhận ra tác động của tro bay (hạt mịn không nhựa) trong việc kháng lại sự nhạy cảm với lỏng hóa của cát bằng cách tiến hành các thử nghiệm triaxial tuần hoàn kiểm soát biến dạng trên các mẫu được tăng cường bằng sợi polypropylene và không được tăng cường. Tro bay được trộn lẫn với các tỉ lệ khác nhau (đến 50%) so với trọng lượng khô của cát. Ba bộ thí nghiệm độc lập đã được thực hiện trên hỗn hợp cát-tro bay. Trong bộ thứ nhất, hỗn hợp cát-tro bay không có tăng cường; thứ hai bằng cách thêm sợi polypropylene @ 0.5% trọng lượng của cát; và bộ thứ ba bằng cách trộn sợi trong tỷ lệ trên, xem xét tổng trọng lượng của hỗn hợp cát-tro bay. Các mẫu được thử nghiệm dưới biến dạng trục 0.5% (biến dạng cắt 0.75%) và tần số 1 Hz. Kết quả được tóm tắt để hiểu tác động của các yếu tố khác nhau như hàm lượng tro bay, độ rỗng tương đối, và sự tăng cường lên lỏng hóa. Kết quả chỉ ra rằng có một mối tương quan không nhất quán giữa khả năng chống lỏng hóa của cát và tỷ lệ hàm lượng tro bay. Số chu kỳ để khởi đầu lỏng hóa ban đầu giảm và sau đó tăng lên và lại giảm khi tăng tỷ lệ tro bay. Mô đun cắt của hỗn hợp cũng tuân theo một xu hướng tương tự. Việc thêm sợi polypropylene đã giúp trì hoãn việc khởi đầu lỏng hóa và đáng kể hoãn sự biến dạng của ma trận cát-tro bay.
Từ khóa
#lỏng hóa #tro bay #polypropylene #thử nghiệm triaxial #cátTài liệu tham khảo
Seed HB, Idriss IM, Arango I (1983) Evaluation of liquefaction potential using field performance data. J Geotech Eng 109(3):458–482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458)
Seed HB (1987) Design problems in soil liquefaction. J Geotech Eng 113(8):827–845. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:8(827)
Erten D, Maher MH (1995) Cyclic undrained behavior of silty sand. Soil Dyn Earthq Eng 14(2):115–123. https://doi.org/10.1016/0267-7261(94)00035-F
Amini F, Qi GZ (2000) Liquefaction testing of stratified silty sands. J Geotech Geoenviron Eng 126:208–217. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(208)
Carraro JAH, Bandini P, Salgado R (2003) Liquefaction resistance of clean and non-plastic silty sands based on cone penetration resistance. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(965)
Bian H, Shahrour I (2009) Numerical model for unsaturated sandy soils under cyclic loading: application to liquefaction. Soil Dyn Earthq Eng 29:237–244. https://doi.org/10.1016/j.soildyn.2008.01.004
Chang NY, Yeh ST, Kaufman LP (1982) Liquefaction potential of clean and silty sands. In: Vol. 2 of Proc. 3rd International Conference on Earthquake Microzonation, 1017–1032
Kuerbis R, Negussey D, Vaid VP (1988) Effect of gradation and fines content on the undrained response of sand. In Proc. Hydraulic Fill Structures, 330–345. Fort Collins, CO, USA
Polito PC, Martin JR (2001) Effects of non-plastic fines on the liquefaction resistance of sands. J Geotech Geoenviron Eng 127:408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408)
Xenaki VC, Athanasopoulos GA (2003) Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines. Soil Dyn Earthq Eng 23(3):1–12. https://doi.org/10.1016/S0267-7261(02)00210-5
Ochoa-Cornejo F, Bobet A, Jhonston CT, Santagata M (2016) Cyclic behavior and pore pressure generation in sands with laponite, a super-plastic nanoparticle. Soil Dyn Earthq Eng 88:265–279. https://doi.org/10.1016/j.soildyn.2016.06.008
Huang Y, Wang L (2016) Laboratory investigation of liquefaction mitigation in silty sand using nanoparticles. Eng Geol. https://doi.org/10.1016/j.enggeo.2016.01.015
Huang Y, Wen Z, Wang L, Zhu C (2019) Centrifuge testing of liquefaction mitigation effectiveness on sand foundations treated with nanoparticles. Eng Geol 249:249–256. https://doi.org/10.1016/j.enggeo.2019.01.005
Thevanayagam S (2007) Intergrain contact density indices for granular mixes—I: Framework. Earthq Engin Engin Vib 6:123–134. https://doi.org/10.1007/s11803-007-0705-7
Kumar SS, Krishna AA, Dey A (2017) Evaluation of dynamic properties of sandy soil at high cyclic strains. Soil Dyn Earthq Eng 99:157–167. https://doi.org/10.1016/j.soildyn.2017.05.016
Du S, Chian SC (2018) Excess pore pressure generation in sand under non-uniform cyclic strain triaxial testing. Soil Dyn Earthq Eng 109:119–213. https://doi.org/10.1016/j.soildyn.2018.03.016
Ni M, Abdoun T, Dobry R (2019) Seismic liquefaction of sand at high confining pressure. In: Proc., Geo-Congress, GSP 308. https://doi.org/10.1061/9780784482100.033
Silver ML, Seed HB (1971) Volume changes in sands during cyclic loading. J Soil Mech Found Div 97(9):1171–1182. https://doi.org/10.1061/JSFEAQ.0001658
Martin GR, Finn WDL, Seed HB (1975) Fundamentals of liquefaction under cyclic loading. J Geotech Eng Divisions 101(GT5):423–438. https://doi.org/10.1061/AJGEB6.0000164
Dobry R, Ladd RS, Yokel FY, Chung RM, Powell D (1982) Prediction of pore water pressure build-up and liquefaction of sands during earthquakes by the cyclic strain method. In: Natl Bur Stand Build Sci Ser, pp 138
Boominathan A, Hari S (2002) Liquefaction strength of fly ash reinforced with randomly distributed fibers. Soil Dyn Earthq Eng 22(9–12):1027–1033. https://doi.org/10.1016/S0267-7261(02)00127-6
Ibraim E, Diambra A, Wood DM, Russell AR (2010) Static liquefaction of fiber reinforced sand under monotonic loading. Geotext Geomembr 28:374–385. https://doi.org/10.1016/j.geotexmem.2009.12.001
Liu J, Wang G, Kamai T, Zhang F, Yang J, Shi B (2011) Static liquefaction behavior of saturated fiber-reinforced sand in undrained ring-shear tests. Geotext Geomembr 29:462–471. https://doi.org/10.1016/j.geotexmem.2011.03.002
Singh S (1996) Liquefaction characteristics of silts. Geotech Geol Eng 14:1–19. https://doi.org/10.1007/BF00431231
Amini F, Sama KM (1999) Behavior of stratified sand-silt-gravel composites under seismic liquefaction conditions. Soil Dyn Earthq Eng 18(6):445–455. https://doi.org/10.1016/S0267-7261(99)00011-1
Thevanayagam S (1999) Liquefaction and shear wave velocity characteristics of silty/gravely soils.In: Proc. 15th US-Japan Workshop on Bridge Eng., Public Work Res. Institute, Tsukuba City, Tokyo, Japan 133–137
Ni Q, Tan TS, Dasari GR, Hight DW (2004) Contribution of fines to the compressive strength of mixed soils. Geotechnique 54(9):561–569
Thevanayagam S, Martin GR (2002) Liquefaction in silty soils-screening and remediation issues. Soil Dyn Earthq Eng 22:1035–1042. https://doi.org/10.1016/S0267-7261(02)00128-8
Rahman MM, Lo SR (2008) The prediction of equivalent granular steady state line of loose sand with fines. Geomech Geoeng An Int J 3(3):179–190. https://doi.org/10.1080/17486020802206867
Porcino DD, Triantafyllidis T, Wichtmann T, Tomasello G (2021) Application of critical state approach to liquefaction resistance of sand–silt mixtures under cyclic simple shear loading. J Geotech Geoenviron Eng 147(3):04020177. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002470
Karim ME, Alam MJ (2014) Effect of non-plastic silt content on the liquefaction behavior of sand-silt mixture. Soil Dyn Earthq Eng 65:142–150. https://doi.org/10.1016/j.soildyn.2014.06.010
Thevanaygam S, Veluchamy V, Huang Q, Sivaratnarajah U (2016) Non-plastic silty sand liquefaction, screening, and remediation. Soil Dyn Earthq Eng 91:147–159. https://doi.org/10.1016/j.soildyn.2016.09.027
Adampira M, Derakhshandi M, Ghalandarzadeh A (2021) Experimental study on seismic response characteristics of liquefiable soil layers. J Earthq Eng 25(7):1287–1315. https://doi.org/10.1080/13632469.2019.1568930
Dezfulian H (1982) Effects of silt content on dynamic properties of sandy soils. In: Proc., 8th World Conference on Earthquake Engineering 63–70
Shen CK, Vrymoed JL, Ueno CK (1977) The effects of fines on liquefaction of sands. In: Proc., 9th International Conference on Soil Mechanics and Foundations Engineering 2:381–385
Vaid VP (1994) Liquefaction of silty soils. In: Proc., Ground Failures under Seismic Conditions, Geotechnical Special Publication, 1-16
Yamamuro JA, Lade PV (1997) Static liquefaction of very loose sands. Can Geotech J 34:905–917
Koester JP (1994) The influence of fine type and content on cyclic strength: ground failures under seismic conditions. Geotechnical Special Publication, USA, pp 330–345
Puri VK, Lama R, Regmi G, Kumar S, Prakash S (2015) Liquefaction potential of sand-fly ash mixtures. In: Proc., 50th Indian Geotechnical Conference, Pune.
Enomoto T (2019) Liquefaction and post-liquefaction properties of sand-silt mixtures and undisturbed silty sands. Soils Found 59:2311–2323. https://doi.org/10.1016/j.sandf.2019.09.005
Kaniraj SR, Gayathri V (2003) Geotechnical behavior of fly ash mixed with randomly oriented fiber inclusions. Geotext Geomembr 21:123–149. https://doi.org/10.1016/S0266-1144(03)00005-0
Mohanty S, Patra NR (2014) Cyclic behavior and liquefaction potential of Indian pond ash located in seismic zones III and IV. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000964
Vijayasri T, Patra NR, Raychowdhry P (2016) cyclic behavior and liquefaction potential of Renusagar pond ash reinforced with geotextiles. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001633
Jakka RS, Datta M, Ramana GV (2010) Liquefaction behavior of loose and compacted pond ash. Soil Dyn Earthq Eng 30(7):580–590. https://doi.org/10.1016/j.soildyn.2010.01.015
Kalinski ME, Wallace AD (2011) Laboratory measurement of the dynamic properties of fly ash. In: Proc., Geo-Frontiers 1210–1216. https://doi.org/10.1061/41165(397)124
Chattaraj R, Sengupta A (2016) Liquefaction potential and strain dependent dynamic properties of Kasai River sand. Soil Dyn Earthq Eng 90:467–475. https://doi.org/10.1016/j.soildyn.2016.07.023
Keramatikerman M, Chegenizadeh A, Nikraz H (2017) Experimental study on effect of fly ash on liquefaction resistance of fly ash. Soil Dyn Earthq Eng 93:1–6. https://doi.org/10.1016/j.soildyn.2016.11.012
Kolay PK, Puri VK, Tamang RL, Regmi G, Kumar S (2019) Effect of fly ash on liquefaction characteristics of Ottawa sand. Int J Geosynth Ground Eng 5:6
Keramatikerman M, Chegenizadeh A, Nikraz H (2020) Effect of flyash on post-cyclic behavior of sand. J Earthq Eng 24(12):2033–2045. https://doi.org/10.1080/13632469.2018.1494643
Derakhshandi M, Rathje EM, Hazirbaba K, Mirhosseini SM (2007) The effect of fines on the pore pressure generation characteristics of saturated sands. Soil Dyn Earthq Eng 28:376–386. https://doi.org/10.1016/j.soildyn.2007.07.002
Abedi M, Yasrobi SS (2010) Effects of plastic fines on the instability of sand. Soil Dyn Earthq Eng 30:61–67. https://doi.org/10.1016/j.soildyn.2009.09.001
Askari F, Dabiri R, Shafiee A, Jafari MK (2011) Liquefaction resistance of sand-silt mixtures using laboratory-based shear wave velocity. Int J Civ Eng 9(2):135–144
Maheshwari BK, Patel AK (2010) Effect of non-plastic silts on liquefaction potential of Solani sand. Geotech Geol Eng 28:559–566. https://doi.org/10.1007/s10706-010-9310-z
Papadopoulou AI, Tika TM (2016) The effect of fines plasticity on monotonic undrained shear strength and liquefaction resistance of sands. Soil Dyn Earthq Eng 88:191–206. https://doi.org/10.1016/j.soildyn.2016.04.015
Eseller-Bayat EE, Monkul MM, Akin O, Yenigun S (2017) The coupled influence of relative density Csr, plasticity and content of fines on cyclic liquefaction resistance of sands. J Earthq Eng. https://doi.org/10.1080/13632469.2017.1342297
Goudarzy M, Konig D, Schanz T (2018) Small and intermediate strain properties of sands containing fines. Soil Dyn Earthq Eng 110:110–120. https://doi.org/10.1016/j.soildyn.2018.02.020
Keramatikerman M, Chegenizadeh A, Nikraz H, Sabbar AS (2018) Effect of fly ash on liquefaction behavior of sand-bentonite mixture. Soils Found 58:1288–1296. https://doi.org/10.1016/j.sandf.2018.07.004
Liu X, Yang J (2018) Influence of size disparity on small-strain shear modulus of sand-fines mixtures. Soil Dyn Earthq Eng 115:217–224. https://doi.org/10.1016/j.soildyn.2018.08.011
Kokusho T (2020) Earthquake-induced flow liquefaction in fines-containing sands under initial shear stress by lab tests and its implication in case histories. Soil Dyn Earthq Eng 130:105984. https://doi.org/10.1016/j.soildyn.2019.105984
Chandrasekaran B (1989) Strength of fabric reinforced sand under axisymmetric loading. Geotext Geomembr 8(4):293–310. https://doi.org/10.1016/0266-1144(89)90013-7
Latha GM, Murthy VS (2007) Effects of reinforcement form on the behavior of geosynthetic reinforced sand. Geotext Geomembr 25:23–32. https://doi.org/10.1016/j.geotexmem.2006.09.002
Moayed RZ, Alibolandi M (2018) Effect of geotextile reinforcement on cyclic undrained behavior of sand. Soil Dyn Earthq Eng 104:395–402. https://doi.org/10.1016/j.soildyn.2017.11.013
Noorzad R, Amini PF (2014) Liquefaction resistance of Babolsar sand reinforced with randomly distributed fibers under cyclic loading. Soil Dyn Earthq Eng 66:281–292. https://doi.org/10.1016/j.soildyn.2014.07.011
Sadeghi MM, Beigi FH (2014) Dynamic behavior of reinforced clayey sand under cyclic loading. Geotext Geomembr 42:564–572. https://doi.org/10.1016/j.geotexmem.2014.07.005
Cen WJ, Wang H, Yu L, Rahman MS (2020) Response of High-Density Polyethylene Geomembrane-Sand Interfaces under Cyclic Shear Loading: Laboratory Investigation. Int J Geomech 20(2):04019166. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001540
Maher MH, Woods RD (1990) Dynamic response of sand reinforced with randomly distributed fibers. J Geotech Eng 116(7):1116–1131
Jamshidi R, Towhata I, Ghiassian H, Tabarsa AR (2010) Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill. Soil Dyn Earthq Eng 30:438–446. https://doi.org/10.1016/j.soildyn.2009.12.017
Porcino DD, Diano V (2017) The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures. Soil Dyn Earthq Eng 101:311–321. https://doi.org/10.1016/j.soildyn.2017.07.015
Payan M, Senetakis K, Khoshghalb A, Khalili N (2017) Characterization of the small-strain dynamic behaviour of silty sands; contribution of silica non-plastic fines content. Soil Dyn Earthq Eng 102:232–240. https://doi.org/10.1016/j.soildyn.2017.08.008
Zhang X, Russell AR (2020) Assessing liquefaction resistance of fiber-reinforced sand using a new pore pressure ratio. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002197
Ghadr S, Samadzadeh A, Bahadori H, O’Kelly BC, Assadi-Langroudi A (2021) Liquefaction resistance of silty sand with ground rubber additive. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002002
ASTM D2487–17e1 (2017) Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, West Conshohocken PA. www.astm.org
IS (Indian Standard) 1498 (1970) (reaffirmed 2007) Classification and identification of soils for general engineering purpose. Bureau of Indian Standards
Li B, Huang M, Zeng X (2016) Dynamic behavior and liquefaction analysis of recycled-rubber sand mixtures. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001629
Li H, Senetakis K (2017) Dynamic properties of polypropylene fiber-reinforced silica quarry sand. Soil Dyn Earthq Eng 100:224–232. https://doi.org/10.1016/j.soildyn.2017.05.035
Chegenizadeh A, Keramatikerman M, Nikraz H (2018) Liquefaction resistance of fibre reinforced low-plasticity silt. Soil Dyn Earthq Eng 104:372–377. https://doi.org/10.1016/j.soildyn.2017.11.004
Ghadr S, Samadzadeh A, Bahadori H, Assadi-Langroudi A (2020) Liquefaction resistance of fibre-reinforced silty sands under cyclic loading. Geotext Geomembr. https://doi.org/10.1016/j.geotexmem.2020.07.002
Amini PF, Noorzad R (2018) Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing. Soil Dyn Earthq Eng 104:45–53. https://doi.org/10.1016/j.soildyn.2017.09.026
ASTM D-4254 (1991) Standard test method for minimum index density and unit weight of soils and calculation of relative density1. ASTM International, West Conshohocken PA. www.astm.org
ASTM D-4253 (1993) Standard test method for maximum index density and unit weight of soils using a vibration table1. ASTM International, West Conshohocken PA. www.astm.org
Raj PP (2008) Soil Mechanics & Foundation Engineering. Dorling Kindersley (India) Pvt. Ltd. Pearson Education
Ladd RS (1978) Preparing test specimen using undercompaction. Geotech Test J ASTM 1(1):16–23. https://doi.org/10.1520/GTJ10364J
DeGregorio VB (1990) Loading systems, sample preparation, and liquefaction. J Geotech Eng 116:805–821. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:5(805)
ASTM D5311/D5311M (2013) Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil. ASTM International, West Conshohocken PA. www.astm.org
ASTM D3999/D3999M-11e1 (2011) Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus. ASTM International, West Conshohocken PA. www.astm.org
Kramer SL (1996) Geotechnical earthquake engineering. Pearson Education Pvt. Ltd., Singapore
Ishihara K (1993) Liquefaction and flow failures during earthquakes. Geotechnique 43(3):351–415
Wu J, Kammerer AM, Riemer MF, Seed RB, Pestana JM (2004) Laboratory study of liquefaction triggering criteria. In: 13th world conference on earthquake engineering, paper no-2580, Vancouver, BC, Canada
Guoxing C, Enquan Z, Zhihua W, Binghui W, Xiaojun L (2016) Experimental study on fluid characteristics of medium dense saturated fine sand in pre- and post-liquefaction. Bull Earthquake Eng 14(8):2185–2212
Guoxing C, Wu Q, Tian S, Kai Z, Enquan Z, Lingyu X, Yanguo Z (2018) Cyclic behaviors of saturated sand-gravel mixtures under undrained cyclic triaxial loading. J Earthquake Eng. https://doi.org/10.1080/13632469.2018.1540370
Lirer S, Mele L (2019) On the apparent viscosity of granular soils during liquefaction tests. Bull Earthquake Eng 17(11):5809–5824. https://doi.org/10.1007/s10518-019-00706-0
Mele L (2022) An experimental study on the apparent viscosity of sandy soils: from liquefaction triggering to pseudo-plastic behaviour of liquefied sands. Acta Geotech 17(2):463–481. https://doi.org/10.1007/s11440-021-01261-2
Towhata I (2008) Geotechnical Earthquake Engineering. Springer, Berlin Heidelberg
Hardin BO (1978) The nature of stress-strain behavior of soils.In: Proc. of Earthquake Engineering and Soil Dynamics 1:3–89, ASCE, Pasadena California
ElGhoraiby MA, Park H, Manzari MT (2020) Stress-strain behavior and liquefaction strength characteristics of Ottawa F65 sand. Soil Dyn Earthq Eng 138:106292. https://doi.org/10.1016/j.soildyn.2020.106292
Varghese R, Amuthan MS, Boominathan A, Banerjee S (2019) Cyclic and postcyclic behaviour of silts and silty sands from the Indo Gangetic Plain. Soil Dyn Earthq Eng 125:105750. https://doi.org/10.1016/j.soildyn.2019.105750