Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces

Nicola Garofalo1, Duy-Minh Nhieu1
1Department of Mathematics Purdue University West Lafayette USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. Bellaïche,Sub-Riemannian Geometry, Birkhäuser, Boston, 1996.

L. Capogna, D. Danielli and N. Garofalo,An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations18 (1993), 1765–1794.

L. Capogna, D. Danielli and N. Garofalo,Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Amer. J. Math.118 (1996), 1153–1196.

L. Capogna and N. Garofalo,NTA domains for Carnot-Carathéodory metrics and a Fatou type theorem, preprint, 1995.

W. L. Chow,Uber System von linearen partiellen Differentialgleichungen erster Ordnug, Math. Ann.117 (1939), 98–105.

M. Christ,The extension problem for certain function spaces involving fractional orders of differentiability, Ark. Mat.22 (1984), 63–81.

S. K. Chua,Extension theorems on weighted sobolev spaces, Indiana Univ. Math. J.4 (1992), 1027–1076.

R. Coifman and G. Weiss,Analyse harmonique non-commutative sur certains espaces homogenes, Springer-Verlag, Berlin, 1971.

D. Danielli,Regularity at the boundary for solutions of nonlinear subelliptic equations, Indiana Univ. Math. J.44 (1995), 269–286.

D. Danielli,A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, preprint.

D. Danielli, N. Garofalo and D. M. Nhieu,Trace inequalities for Carnot-Carathéodory spaces and applications to quasilinear subelliptic equations, preprint.

J. Deny and J. L. Lions,Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble)5 (1953), 305–370.

L. C. Evans and R. F. Gariepy,Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.

C. Fefferman and D. H. Phong,Subelliptic eigenvalue problems, inProceedings of the Conference in Harmonic Analysis in Honor of A. Zygmund, Wadsworth Math. Ser., Belmont, CA, 1981, pp. 530–606.

C. Fefferman and A. Sanchez-Calle,Fundamental solutions for second order subelliptic operators, Ann. of Math. (2)124 (1986), 247–272.

G. B. Folland and E. M. Stein,Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.

B. Franchi and E. Lanconelli,Une metrique associée à une classe d’operateurs elliptiques degénérés, inProceedings of the Meeting “Linear Partial and Pseudo Differential Operators”, Rend. Sem. Mat. Univ. Politec. Torino, 1982.

B. Franchi and E. Lanconelli,Hölder regularity theorem for a class of linear non uniform elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa10 (1983), 523–541.

B. Franchi and E. Lanconelli,Une condition géométrique pour l'inégalité de Harnack, J. Math. Pures Appl.64 (1985), 237–256.

B. Franchi, R. Serapioni and F. Serra Cassano,Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math.22 (1996), 859–890.

B. Franchi, R. Serapioni and F. Serra Cassano,Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7)11 (1997), 83–117.

K. O. Friedrichs,The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc.55 (1944), 132–151.

N. Garofalo,Recent Developments in the Theory of Subelliptic Equations and Its Geometric Aspects, Birkhäuser, Boston, to appear.

N. Garofalo and D. M. Nhieu,Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math.49 (1996), 1081–1144.

W. Hansen and H. Huber,The Dirichlet problem for sublaplacians on nilpotent groups—Geometric criteria for regularity, Math. Ann.246 (1984), 537–547.

P. Hartman,Ordinary Differential Equations, Birkhäuser, Boston, 1982.

E. Hille,Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, Mass., 1968.

L. Hörmander,Hypoelliptic second-order differential equations, Acta Math.119 (1967), 147–171.

D. Jerison,The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J.53 (1986), 503–523.

D. Jerison and C. E. Kenig,Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math.46 (1982), 80–147.

P. W. Jones,Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math.147 (1981), 71–88.

G. Lu,Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations, Publ. Mat.40 (1996), 301–329.

O. Martio and J. Sarvas,Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I4 (1979), 384–401.

N. Meyers and J. Serrin,H=W, Proc. Nat. Acad. Sci. U.S.A.51 (1964), 1055–1056.

C. B. Morrey Jr.,Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966.

A. Nagel, E. M. Stein and S. Wainger,Balls and metrics defined by vector fields I: basic properties, Acta Math.155 (1985), 103–147.

D. M. Nhieu,The extension problem for Sobolev spaces on the Heisenberg group, Ph.D Thesis, Purdue University, 1996.

O. A. Oleinik and E. V. Radkevich,Second order equations with non-negative characteristic form, inMathematical Analysis 1969, Itogi Nauki, Moscow, 1971 [Russian]; English translation: Amer. Math. Soc., Providence, R.I., 1973.

R. S. Phillips and L. Sarason,Elliptic-parabolic equations of the second order, J. Math. Mech.17 (1967/8), 891–917.

L. Saloff-Coste,A note on Poincaré, Sobolev, and Harnack inequalities, Duke Math. J., I.M.R.N.2 (1992), 27–38.

N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon,Analysis and Geometry on Groups, Cambridge Tracts in Mathematics 100, Cambridge University Press, 1992.

S. K. Vodop'yanov and A. V. Greshnov,On extension of functions of bounded mean oscillation from domains in a space of homogeneous type with intrinsic metric, Siberian Math. J. 36,5 (1995), 873–901.