Lipoprotein apheresis is an optimal therapeutic option to reduce increased Lp(a) levels
Tóm tắt
Lipoprotein(a) (Lp(a)) is a genetic risk factor for cardiovascular disease (CVD) and is associated with the induction and sustaining of atherosclerotic cardiovascular diseases (ASCVD). Since 2008 Lp(a) along with progressive CVD has been approved as an indication for regular lipoprotein apheresis (LA) in Germany. The German Lipoprotein Apheresis Registry (GLAR) has been initiated to provide statistical evidence for the assessment of extracorporeal procedures to treat dyslipidemia for both LDL-cholesterol (LDL-C) and Lp(a). The GLAR now allows prospective investigations over a 5-year period about annual incidence rates of cardiovascular events. Here Lp(a) patients (LDL-C < 100 mg/dl; Lp(a) > 60 mg/dl or >120 nmol/l) showed the same reduction of major coronary (83%) and non-coronary events (63%) as had been formerly shown in the Pro(a)LiFe study. However, Lp(a) is not only an apolipoprotein(a) (apo(a)) and LDL-C containing particle, which is covalently bound to a LDL-C core by a disulphide bridge. The composition of this particle, inter alia containing oxidized phospholipids, gives pro-atherosclerotic, pro-inflammatory, and pro-thrombotic properties, inducing atherosclerotic processes mainly in the arterial wall. However, recent investigations have shown that a reduction of inflammatory settings without LDL-C or Lp(a) reduction may reduce ASCVD events. Lipoprotein apheresis (LA) could not only reduce LDL-C and Lp(a) in parallel, but also different inflammatory and coagulation parameters. In summary lipoprotein apheresis is not only anti-atherosclerotic, but also anti-inflammatory and anti-thrombotic and therefore an ideal treatment option with respect to the shown reduction of major adverse coronary events (MACE) and major adverse non-coronary events (MANCE) by reducing Lp(a) levels.
Tài liệu tham khảo
Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L, Investigators IS (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364(9438):937–952. https://doi.org/10.1016/S0140-6736(04)17018-9
Tsimikas S (2017) A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J Am Coll Cardiol 69(6):692–711. https://doi.org/10.1016/j.jacc.2016.11.042
Nordestgaard BG, Langsted A (2016) Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res 57(11):1953–1975. https://doi.org/10.1194/jlr.R071233
Nordestgaard BG, Chapman MJ, Ray K, Boren J, Andreotti F, Watts GF, Ginsberg H, Amarenco P, Catapano A, Descamps OS, Fisher E, Kovanen PT, Kuivenhoven JA, Lesnik P, Masana L, Reiner Z, Taskinen MR, Tokgozoglu L, Tybjaerg-Hansen A, European Atherosclerosis Society Consensus P (2010) Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 31(23):2844–2853. https://doi.org/10.1093/eurheartj/ehq386
Marcovina SM, Moriarty PM, Koschinsky ML, Guyton JR (2018) JCL roundtable-lipoprotein(a): the emerging risk factor. J Clin Lipidol 12(6):1335–1345. https://doi.org/10.1016/j.jacl.2018.11.003
Willeit P, Ridker PM, Nestel PJ, Simes J, Tonkin AM, Pedersen TR, Schwartz GG, Olsson AG, Colhoun HM, Kronenberg F, Drechsler C, Wanner C, Mora S, Lesogor A, Tsimikas S (2018) Baseline and on-statin treatment lipoprotein(a) levels for prediction of cardiovascular events: individual patient-data meta-analysis of statin outcome trials. Lancet 392(10155):1311–1320. https://doi.org/10.1016/S0140-6736(18)31652-0
Parhofer KG (2009) Review of extended-release niacin/laropiprant fixed combination in the treatment of mixed dyslipidemia and primary hypercholesterolemia. Vasc Health Risk Manag 5:901–908
Albers JJ, Slee A, O’Brien KD, Robinson JG, Kashyap ML, Kwiterovich PO Jr., Xu P, Marcovina SM (2013) Relationship of apolipoproteins A‑1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes). J Am Coll Cardiol 62(17):1575–1579. https://doi.org/10.1016/j.jacc.2013.06.051
Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, Committee FS, Investigators (1722) Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 376(18):1713. https://doi.org/10.1056/NEJMoa1615664
Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, Jukema JW, Lecorps G, Mahaffey KW, Moryusef A, Pordy R, Quintero K, Roe MT, Sasiela WJ, Tamby JF, Tricoci P, White HD, Zeiher AM, Committees OO, Investigators (2018) Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 379(22):2097–2107. https://doi.org/10.1056/NEJMoa1801174
Toth PP, Worthy G, Gandra SR, Sattar N, Bray S, Cheng LI, Bridges I, Worth GM, Dent R, Forbes CA, Deshpande S, Ross J, Kleijnen J, Stroes ESG (2017) Systematic review and network meta-analysis on the efficacy of evolocumab and other therapies for the management of lipid levels in hyperlipidemia. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.005367
Schettler V, Neumann CL, Hulpke-Wette M, Hagenah GC, Schulz EG, Wieland E, German Apheresis Working G (2012) Current view: indications for extracorporeal lipid apheresis treatment. Clin Res Cardiol Suppl 7:15–19. https://doi.org/10.1007/s11789-012-0046-6
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, Group CT (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131. https://doi.org/10.1056/NEJMoa1707914
Back M, Hansson GK (2015) Anti-inflammatory therapies for atherosclerosis. Nat Rev Cardiol 12(4):199–211. https://doi.org/10.1038/nrcardio.2015.5
Wieland E, Schettler V, Armstrong VW (2002) Highly effective reduction of C‑reactive protein in patients with coronary heart disease by extracorporeal low density lipoprotein apheresis. Atherosclerosis 162(1):187–191
Julius U, Siegert G, Kostka H, Schatz U, Hohenstein B (2015) Effects of different lipoprotein apheresis methods on serum protein levels. Atheroscler Suppl 18:95–102. https://doi.org/10.1016/j.atherosclerosissup.2015.02.018
Roeseler E, Julius U, Heigl F, Spitthoever R, Heutling D, Breitenberger P, Leebmann J, Lehmacher W, Kamstrup PR, Nordestgaard BG, Maerz W, Noureen A, Schmidt K, Kronenberg F, Heibges A, Klingel R, ProLiFe-Study G (2016) Lipoprotein apheresis for lipoprotein(a)-associated cardiovascular disease: prospective 5 years of follow-up and apolipoprotein(a) characterization. Arterioscler Thromb Vasc Biol 36(9):2019–2027. https://doi.org/10.1161/ATVBAHA.116.307983
Schettler VJJ, Neumann CL, Peter C, Zimmermann T, Julius U, Roeseler E, Heigl F, Grutzmacher P, Blume H, Scientific Board of GftGAWG (2017) Current insights into the German Lipoprotein Apheresis Registry (GLAR)—Almost 5 years on. Atheroscler Suppl 30:50–55. https://doi.org/10.1016/j.atherosclerosissup.2017.05.006
Tsimikas S, Fazio S, Viney NJ, Xia S, Witztum JL, Marcovina SM (2018) Relationship of lipoprotein(a) molar concentrations and mass according to lipoprotein(a) thresholds and apolipoprotein(a) isoform size. J Clin Lipidol 12(5):1313–1323. https://doi.org/10.1016/j.jacl.2018.07.003
Capoulade R, Yeang C, Chan KL, Pibarot P, Tsimikas S (2018) Association of mild to moderate aortic valve Stenosis progression with higher lipoprotein(a) and oxidized phospholipid levels: secondary analysis of a randomized clinical trial. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2018.3798
Tsimikas S (2016) Lipoprotein(a): novel target and emergence of novel therapies to lower cardiovascular disease risk. Curr Opin Endocrinol Diabetes Obes 23(2):157–164. https://doi.org/10.1097/MED.0000000000000237
Stiekema LCA, Stroes ESG, Verweij SL, Kassahun H, Chen L, Wasserman SM, Sabatine MS, Mani V, Fayad ZA (2018) Persistent arterial wall inflammation in patients with elevated lipoprotein(a) despite strong low-density lipoprotein cholesterol reduction by proprotein convertase subtilisin/kexin type 9 antibody treatment. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy862
Winkels H, Ehinger E, Ghosheh Y, Wolf D, Ley K (2018) Atherosclerosis in the single-cell era. Curr Opin Lipidol 29(5):389–396. https://doi.org/10.1097/MOL.0000000000000537
Gistera A, Hansson GK (2017) The immunology of atherosclerosis. Nat Rev Nephrol 13(6):368–380. https://doi.org/10.1038/nrneph.2017.51
Madhur MS, Funt SA, Li L, Vinh A, Chen W, Lob HE, Iwakura Y, Blinder Y, Rahman A, Quyyumi AA, Harrison DG (2011) Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e‑deficient mice. Arterioscler Thromb Vasc Biol 31(7):1565–1572. https://doi.org/10.1161/ATVBAHA.111.227629
Sammalkorpi K, Valtonen V, Kerttula Y, Nikkila E, Taskinen MR (1988) Changes in serum lipoprotein pattern induced by acute infections. Metabolism 37(9):859–865
Holmqvist ME, Wedren S, Jacobsson LT, Klareskog L, Nyberg F, Rantapaa-Dahlqvist S, Alfredsson L, Askling J (2010) Rapid increase in myocardial infarction risk following diagnosis of rheumatoid arthritis amongst patients diagnosed between 1995 and 2006. J Intern Med 268(6):578–585. https://doi.org/10.1111/j.1365-2796.2010.02260.x
Fredrikson GN, Soderberg I, Lindholm M, Dimayuga P, Chyu KY, Shah PK, Nilsson J (2003) Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler Thromb Vasc Biol 23(5):879–884. https://doi.org/10.1161/01.ATV.0000067937.93716.DB
Schiopu A, Bengtsson J, Soderberg I, Janciauskiene S, Lindgren S, Ares MP, Shah PK, Carlsson R, Nilsson J, Fredrikson GN (2004) Recombinant human antibodies against aldehyde-modified apolipoprotein B‑100 peptide sequences inhibit atherosclerosis. Circulation 110(14):2047–2052. https://doi.org/10.1161/01.CIR.0000143162.56057.B5
Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, Hasan AA, Amar S (2018) Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol 72(17):2071–2081. https://doi.org/10.1016/j.jacc.2018.08.1043
Orso E, Schmitz G (2017) Lipoprotein(a) and its role in inflammation, atherosclerosis and malignancies. Clin Res Cardiol Suppl 12(Suppl 1):31–37. https://doi.org/10.1007/s11789-017-0084-1
van der Valk FM, Bekkering S, Kroon J, Yeang C, Van den Bossche J, van Buul JD, Ravandi A, Nederveen AJ, Verberne HJ, Scipione C, Nieuwdorp M, Joosten LA, Netea MG, Koschinsky ML, Witztum JL, Tsimikas S, Riksen NP, Stroes ES (2016) Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation 134(8):611–624. https://doi.org/10.1161/CIRCULATIONAHA.116.020838
Ramunni A, Burzo M, Verno L, Brescia P (2009) Pleiotropic effects of LDL apheresis. Atheroscler Suppl 10(5):53–55. https://doi.org/10.1016/S1567-5688(09)71811-2
Khan TZ, Hsu LY, Arai AE, Rhodes S, Pottle A, Wage R, Banya W, Gatehouse PD, Giri S, Collins P, Pennell DJ, Barbir M (2017) Apheresis as novel treatment for refractory angina with raised lipoprotein(a): a randomized controlled cross-over trial. Eur Heart J 38(20):1561–1569. https://doi.org/10.1093/eurheartj/ehx178
Leebmann J, Roeseler E, Julius U, Heigl F, Spitthoever R, Heutling D, Breitenberger P, Maerz W, Lehmacher W, Heibges A, Klingel R, ProLiFe Study G (2013) Lipoprotein apheresis in patients with maximally tolerated lipid-lowering therapy, lipoprotein(a)-hyperlipoproteinemia, and progressive cardiovascular disease: prospective observational multicenter study. Circulation 128(24):2567–2576. https://doi.org/10.1161/CIRCULATIONAHA.113.002432
von Bauer R, Oikonomou D, Sulaj A, Kopf S, Fleming T, Rudofsky G, Nawroth P (2018) Pleiotropic effect of lipoprotein-apheresis on the soluble form of activated leukocyte cell adhesion molecule (sALCAM) in familial hypercholesterolaemia. Exp Clin Endocrinol Diabetes. https://doi.org/10.1055/a-0630-0232
Arai K, Orsoni A, Mallat Z, Tedgui A, Witztum JL, Bruckert E, Tselepis AD, Chapman MJ, Tsimikas S (2012) Acute impact of apheresis on oxidized phospholipids in patients with familial hypercholesterolemia. J Lipid Res 53(8):1670–1678. https://doi.org/10.1194/jlr.P027235
Ferretti G, Bacchetti T, Johnston TP, Banach M, Pirro M, Sahebkar A (2018) Lipoprotein(a): a missing culprit in the management of athero-thrombosis? J Cell Physiol 233(4):2966–2981. https://doi.org/10.1002/jcp.26050
Schettler VJ, Schulz EG, Hagenah GC, Neumann CL (2014) Successful completion of pregnancy using apheresis and a balanced dose of coagulation factors in the presence of high thrombophilia and Lp(a) levels in a woman with two previous abortions. Clin Kidney J 7(5):497–498. https://doi.org/10.1093/ckj/sfu083
Romagnuolo I, Sticchi E, Attanasio M, Grifoni E, Cioni G, Cellai AP, Abbate R, Fatini C (2016) Searching for a common mechanism for placenta-mediated pregnancy complications and cardiovascular disease: role of lipoprotein(a). Fertil Steril 105(5):1287–1293. https://doi.org/10.1016/j.fertnstert.2016.01.014
Patschan D, Patschan S, Henze E, Wessels JT, Koziolek M, Muller GA (2009) LDL lipid apheresis rapidly increases peripheral endothelial progenitor cell competence. J Clin Apher 24(5):180–185. https://doi.org/10.1002/jca.20208
Mellwig KP, Pulawski E, Horstkotte D, van Buuren F (2012) Lipid apheresis: oxidative stress, rheology, and vasodilatation. Clin Res Cardiol Suppl 7:45–49. https://doi.org/10.1007/s11789-012-0043-9
Wieland E, Schettler V, Creutzfeldt C, Kickbusch H, Schuff-Werner P (1995) Lack of plasma lipid peroxidation during LDL-apheresis by heparin-induced extracorporeal LDL-precipitation. Eur J Clin Invest 25(11):838–842
Schettler V, Methe H, Schuff-Werner P, Muller GA, Wieland E (2000) Acute effect of H.E.L.P. treatment on radical scavenging enzyme activities, total glutathione concentrations in granulocytes, and selenium in plasma. Eur J Clin Invest 30(1):26–32