Lipoprotein(a) and proprotein convertase subtilisin/kexin type 9 inhibitors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tsimikas S, Fazio S, Ferdinand KC, Ginsberg HN, Koschinsky ML, Marcovina SM et al (2018) NHLBI working group recommendations to reduce lipoprotein(a)-mediated risk of cardiovascular disease and aortic stenosis. J Am Coll Cardiol 71(2):177–192. https://doi.org/10.1016/j.jacc.2017.11.014
Sharma M, Redpath GM, Williams MJ, McCormick SP (2017) Recycling of apolipoprotein(a) after PlgRKT-mediated endocytosis of lipoprotein(a). Circ Res 120(7):1091–1102. https://doi.org/10.1161/CIRCRESAHA.116.310272
Schulz R, Schluter KD (2017) PCSK9 targets important for lipid metabolism. Clin Res Cardiol Suppl. https://doi.org/10.1007/s11789-017-0085-0
Reyes-Soffer G, Pavlyha M, Ngai C, Thomas T, Holleran S, Ramakrishnan R et al (2017) Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation 135(4):352–362. https://doi.org/10.1161/CIRCULATIONAHA.116.025253
Tsimikas S (2017) A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J Am Coll Cardiol 69(6):692–711. https://doi.org/10.1016/j.jacc.2016.11.042
Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Lennon RJ, Kornman KS et al (2005) Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med 353(1):46–57. https://doi.org/10.1056/NEJMoa043175
Tavori H, Christian D, Minnier J, Plubell D, Shapiro MD, Yeang C et al (2016) PCSK9 association with lipoprotein(a). Circ Res 119(1):29–35. https://doi.org/10.1161/CIRCRESAHA.116.308811
Nave AH, Lange KS, Leonards CO, Siegerink B, Doehner W, Landmesser U et al (2015) Lipoprotein (a) as a risk factor for ischemic stroke: a meta-analysis. Atherosclerosis 242(2):496–503
Langsted A, Kamstrup PR, Nordestgaard BG (2019) High lipoprotein(a) and high risk of mortality. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy902
Cao YX, Liu HH, Li S, Li JJ (2018) A Meta-analysis of the effect of PCSK9-monoclonal antibodies on circulating lipoprotein (a) levels. Am J Cardiovasc Drugs. https://doi.org/10.1007/s40256-018-0303-2
Watts GF, Chan DC, Somaratne R, Wasserman SM, Scott R, Marcovina SM et al (2018) Controlled study of the effect of proprotein convertase subtilisin-kexin type 9 inhibition with evolocumab on lipoprotein(a) particle kinetics. Eur Heart J 39(27):2577–2585. https://doi.org/10.1093/eurheartj/ehy122
Stiekema LCA, Stroes ESG, Verweij SL, Kassahun H, Chen L, Wasserman SM et al (2018) Persistent arterial wall inflammation in patients with elevated lipoprotein(a) despite strong low-density lipoprotein cholesterol reduction by proprotein convertase subtilisin/kexin type 9 antibody treatment. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy862
Moriarty PM, Parhofer KG, Babirak SP, Cornier MA, Duell PB, Hohenstein B et al (2016) Alirocumab in patients with heterozygous familial hypercholesterolaemia undergoing lipoprotein apheresis: the ODYSSEY ESCAPE trial. Eur Heart J 37(48):3588–3595. https://doi.org/10.1093/eurheartj/ehw388
Giugliano RP, Pedersen TR, Park JG, De Ferrari GM, Gaciong ZA, Ceska R et al (2017) Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet 390(10106):1962–1971. https://doi.org/10.1016/S0140-6736(17)32290-0
O’Donoghue ML, Fazio S, Giugliano RP, Stroes ESG, Kanevsky E, Gouni-Berthold I et al (2018) Lipoprotein(a), PCSK9 inhibition and cardiovascular risk: insights from the FOURIER trial. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.118.037184
Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R et al (2018) Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 379(22):2097–2107. https://doi.org/10.1056/NEJMoa1801174
Verbeek R, Hoogeveen RM, Langsted A, Stiekema LCA, Verweij SL, Hovingh GK et al (2018) Cardiovascular disease risk associated with elevated lipoprotein(a) attenuates at low low-density lipoprotein cholesterol levels in a primary prevention setting. Eur Heart J 39(27):2589–2596. https://doi.org/10.1093/eurheartj/ehy334
Willeit P, Ridker PM, Nestel PJ, Simes J, Tonkin AM, Pedersen TR et al (2018) Baseline and on-statin treatment lipoprotein(a) levels for prediction of cardiovascular events: individual patient-data meta-analysis of statin outcome trials. Lancet 392(10155):1311–1320. https://doi.org/10.1016/S0140-6736(18)31652-0
Yeang C, Witztum JL, Tsimikas S (2015) ‘LDL-C’ = LDL-C + Lp(a)-C: implications of achieved ultra-low LDL-C levels in the proprotein convertase subtilisin/kexin type 9 era of potent LDL-C lowering. Curr Opin Lipidol 26(3):169–178
Leebmann J, Roeseler E, Julius U, Heigl F, Spitthoever R, Heutling D et al (2013) Lipoprotein apheresis in patients with maximally tolerated lipid-lowering therapy, lipoprotein(a)-hyperlipoproteinemia, and progressive cardiovascular disease: prospective observational multicenter study. Circulation 128(24):2567–2576. https://doi.org/10.1161/CIRCULATIONAHA.113.002432
Roeseler E, Julius U, Heigl F, Spitthoever R, Heutling D, Breitenberger P et al (2016) Lipoprotein apheresis for lipoprotein(a)-associated cardiovascular disease: prospective 5 years of follow-up and apolipoprotein(a) characterization. Arterioscler Thromb Vasc Biol 36(9):2019–2027. https://doi.org/10.1161/ATVBAHA.116.307983
Viney NJ, van Capelleveen JC, Geary RS, Xia S, Tami JA, Yu RZ et al (2016) Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 388(10057):2239–2253. https://doi.org/10.1016/S0140-6736(16)31009-1