Liệu pháp gen nhắm mục tiêu dựa trên lipoplex để ức chế sự phát triển của khối u có biểu hiện VEGFR thông qua việc sản xuất các phân tử chống sinh máu

Shu-Yi Ho1, Pin-Rong Chen2, Chia-Hung Chen3, Nu-Man Tsai4,5, Yu-Hsin Lin6, Chen-Si Lin7,8, Cheng-Hsun Chuang2, Xiao-Fan Huang5,9, Yi-Lin Chan10, Yen-Ku Liu2, Chen-Han Chung2,11, Shun-Long Weng12,13, Kuang-Wen Liao14,6,2,15,1
1Department of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan, ROC
2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu City, Taiwan, ROC
3Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan, ROC
4Department of Pathology and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, Taiwan, ROC
5Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City, Taiwan, ROC
6Ph.D. Program in Industrial Development of College of Biological Science and Technology, National Chiao Tung University, Hsinchu City, Taiwan, ROC
7Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan, ROC
8Animal Cancer Center, College of Bioresources and Agriculture, National Taiwan University, Taipei City, Taiwan, ROC
9Institute of Medicine of Chung, Shan Medical University, Taichung City, Taiwan, ROC
10Department of Life Science, Chinese Culture University, Taipei City, Taiwan, ROC
11Hank Clinic Orthopedics Surgery, Miaoli County, Taiwan, ROC
12Department of Medicine, MacKay Medical College, New Taipei City, Taiwan, ROC
13Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan, ROC
14Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan ROC
15Center for Intelligent Drug Systems and Smart Bio-Devices, National Chiao Tung University, Hsinchu City, Taiwan, ROC

Tóm tắt

Protein fusion chống sinh máu RBDV-IgG1 Fc (RBDV), bao gồm miền liên kết thụ thể của yếu tố tăng trưởng nội mạch - A (VEGF-A), đã cho thấy tác dụng chống khối u bằng cách giảm sinh máu trong cơ thể. Nghiên cứu này đã sử dụng lipoplex cationic lipo-PEG-PEI-complex (LPPC) để đồng thời bao bọc cả protein nhắm mục tiêu RBDV và plasmid RBDV (pRBDV) mà không có liên kết cộng hóa trị nhằm đánh giá liệu pháp gen nhắm mục tiêu VEGFR ở chuột mang u ác tính (melanoma) trong cơ thể. LPPC đã bảo vệ gen liệu pháp khỏi sự phân hủy bởi DNase, và các phức hợp LPPC/RBDV có thể nhắm mục tiêu đặc hiệu vào các tế bào B16-F10 dương tính với VEGFR cả trong ống nghiệm và trong cơ thể. Dù có hay không có hướng dẫn protein nhắm mục tiêu RBDV, các protein RBDV biểu hiện từ pRBDV đều được biểu hiện và đạt nồng độ tối đa vào ngày thứ 7 trong huyết thanh sau khi truyền vào cơ thể, đồng thời gây ức chế sự phát triển đáng kể đối với khối u B16-F10 nhưng không xảy ra với các protein đối chứng IgG1. Đặc biệt, việc điều trị LPPC/pRBDV/RBDV với các phân tử nhắm mục tiêu đã làm giảm đáng kể sự phát triển khối u B16-F10 trong cơ thể, mang lại hiệu quả điều trị tốt hơn so với liệu pháp gen nhắm mục tiêu với protein IgG1 hoặc việc sử dụng thuốc protein với RBDV. Sự kết hợp đồng thời của phức hợp LPPC với liệu pháp gen pRBDV và nhắm mục tiêu protein RBDV có thể là một công cụ tiềm năng để thuận tiện triển khai liệu pháp gen nhắm mục tiêu trong điều trị ung thư.

Từ khóa

#Liệu pháp gen #RBDV #VEGFR #u ác tính #sinh máu

Tài liệu tham khảo

Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86:353–64.

Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49.

Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235:442–7.

Ribatti D, Vacca A, Presta M. The discovery of angiogenic factors: a historical review. Gen Pharmacol. 2000;35:227–31.

Voss MJ, Niggemann B, Zanker KS, Entschladen F. Tumour reactions to hypoxia. Curr Mol Med. 2010;10:381–6.

Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol. 2000;35:71–103.

Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.

Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, Moghaddam A, Whitehouse R, Bicknell R, Harris AL. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 1997;57:963–9.

Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2:1097–105.

Shibuya M. VEGF-receptor inhibitors for anti-angiogenesis. Nihon Yakurigaku Zasshi. 2003;122:498–503.

Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27:4733–40.

Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausova J, Macarulla T, Ruff P, van Hazel GA, Moiseyenko V, Ferry D, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30:3499–506.

Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, Dos Santos LV, Aprile G, Ferry DR, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–9.

Lee SY, Kim DK, Cho JH, Koh JY, Yoon YH. Inhibitory effect of bevacizumab on the angiogenesis and growth of retinoblastoma. Arch Ophthalmol. 2008;126:953–8.

Sharma T, Dhingra R, Singh S, Sharma S, Tomar P, Malhotra M, Bhardwaj TR. Aflibercept: a novel VEGF targeted agent to explore the future perspectives of anti-angiogenic therapy for the treatment of multiple tumors. Mini Rev Med Chem. 2013;13:530–40.

Spannuth WA, Nick AM, Jennings NB, Armaiz-Pena GN, Mangala LS, Danes CG, Lin YG, Merritt WM, Thaker PH, Kamat AA, et al. Functional significance of VEGFR-2 on ovarian cancer cells. Int J Cancer. 2009;124:1045–53.

Qureshi S, Elliott RB, Herrington JD. Concurrent gastrointestinal perforation and pulmonary embolism due to bevacizumab in an adult undergoing treatment for stage IV colon cancer. J Oncol Pharm Pract. 2017;23:625–8.

Keramida K, Charalampopoulos G, Filippiadis D, Tsougos E, Farmakis D. Cardiovascular complications of metastatic colorectal cancer treatment. J Gastrointest Oncol. 2019;10:797–806.

van der Woude SO, van Laarhoven HW. Acute hypertension during ramucirumab infusion in two patients with advanced oesophagogastric cancer. BMJ Case Rep. 2016. https://doi.org/10.1136/bcr-2016-215801.

Cao Y. Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol. 2001;33:357–69.

Eskens FA, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer. 2006;42:3127–39.

Verheul HM, Pinedo HM. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer. 2007;7:475–85.

Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett. 2018;16:687–702.

Hardee CL, Arevalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes. 2017;8:65.

Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27.

Wang F, Sun Y, Shi J. Programmed death-ligand 1 monoclonal antibody-linked immunoliposomes for synergistic efficacy of miR-130a and oxaliplatin in gastric cancers. Nanomedicine. 2019;14:1729–44.

Alshaer W, Hillaireau H, Vergnaud J, Mura S, Delomenie C, Sauvage F, Ismail S, Fattal E. Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model. J Control Release. 2018;271:98–106.

Mahmud H, Kasai T, Khayrani AC, Asakura M, Oo AKK, Du J, Vaidyanath A, El-Ghlban S, Mizutani A, Seno A, et al. Targeting glioblastoma cells expressing CD44 with liposomes encapsulating doxorubicin and displaying chlorotoxin-IgG Fc fusion protein. Int J Mol Sci. 2018;19:659.

Huang Y, Huang Y, He J, Wang H, Luo Y, Li Y, Liu J, Zhong L, Zhao Y. PEGylated immunoliposome-loaded endoglin single-chain antibody enhances anti-tumor capacity of porcine alpha1,3GT gene. Biomaterials. 2019;217:119231.

Fox CB, Sivananthan SJ, Duthie MS, Vergara J, Guderian JA, Moon E, Coblentz D, Reed SG, Carter D. A nanoliposome delivery system to synergistically trigger TLR4 AND TLR7. J Nanobiotechnol. 2014;12:17.

Stuart CH, Singh R, Smith TL, D'Agostino R Jr, Caudell D, Balaji KC, Gmeiner WH. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells. Nanomedicine. 2016;11:1207–22.

Mauriz JL, Gonzalez-Gallego J. Antiangiogenic drugs: current knowledge and new approaches to cancer therapy. J Pharm Sci. 2008;97:4129–54.

Tseng FJ, Chen YC, Lin YL, Tsai NM, Lee RP, Chung YS, Chen CH, Liu YK, Huang YS, Hwang CH, et al. A fusion protein with the receptor-binding domain of vascular endothelial growth factor-A (VEGF-A) is an antagonist of angiogenesis in cancer treatment: Simultaneous blocking of VEGF receptor-1 and 2. Cancer Biol Ther. 2010;10:865–73.

Liu YK, Lin YL, Chen CH, Lin CM, Ma KL, Chou FH, Tsai JS, Lin HY, Chen FR, Cheng TL, et al. A unique and potent protein binding nature of liposome containing polyethylenimine and polyethylene glycol: a nondisplaceable property. Biotechnol Bioeng. 2011;108:1318–27.

Lin YL, Chen CH, Liu YK, Huang TH, Tsai NM, Tzou SC, Liao KW. Lipo-PEG-PEI complex as an intracellular transporter for protein therapeutics. Int J Nanomedicine. 2019;14:1119–30.

Lin YL, Tsai NM, Chen CH, Liu YK, Lee CJ, Chan YL, Wang YS, Chang YC, Lin CH, Huang TH, et al. Specific drug delivery efficiently induced human breast tumor regression using a lipoplex by non-covalent association with anti-tumor antibodies. J Nanobiotechnology. 2019;17:25.

Saqafi B, Rahbarizadeh F. Polyethyleneimine-polyethylene glycol copolymer targeted by anti-HER2 nanobody for specific delivery of transcriptionally targeted tBid containing construct. Artif Cells Nanomed Biotechnol. 2019;47:501–11.

Khan N, Bammidi S, Jayandharan GR. A CD33 antigen-targeted AAV6 vector expressing an inducible caspase-9 suicide gene is therapeutic in a xenotransplantation model of acute myeloid leukemia. Bioconjug Chem. 2019;30:2404–16.

Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116:5338–431.

Nobs L, Buchegger F, Gurny R, Allemann E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci. 2004;93:1980–92.

Tseng FJ, Liu YK, Chung YS, Lin YL, Chen CH, Wang WY, Chen YC, Tsai NM, Cheng TL, Pan RY, et al. A fusion protein composed of receptor binding domain of vascular endothelial growth factor-A and constant region fragment of antibody: angiogenesis antagonistic activity. Cytotechnology. 2011;63:285–93.