Lipids in the cell: organisation regulates function

Cellular and Molecular Life Sciences - Tập 75 Số 11 - Trang 1909-1927 - 2018
Ana L. Santos1, Giulio Preta2
1Institut National de la Santé et de la Recherche Médicale, U1001 and Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2Institute of Biochemistry, Vilnius University, Sauletekio 7, LT-10257, Vilnius, Lithuania

Tóm tắt

Từ khóa


Tài liệu tham khảo

Muro E, Atilla-Gokcumen GE, Eggert US (2014) Lipids in cell biology: how can we understand them better? Mol Biol Cell 25:1819–1823

Klose C, Surma MA, Simons K (2013) Organellar lipidomics—background and perspectives. Curr Opin Cell Biol 25:406–413

Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176

Das A, Brown MS, Anderson DD et al (2014) Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife 3:e02882

Sarkar S, Carroll B, Buganim Y et al (2013) Impaired autophagy in the lipid-storage disorder Niemann–Pick type C1 disease. Cell Rep 5:1302–1315

Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438:612–621

Cascianelli G, Villani M, Tosti M et al (2008) Lipid microdomains in cell nucleus. Mol Biol Cell 19:5289–5295

Albi E, Villani M (2009) Nuclear lipid microdomains regulate cell function. Commun Integr Biol 2:23–24

Garofalo T, Manganelli V, Grasso M et al (2015) Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis. Apoptosis 20:621–634

Sorice M, Mattei V, Matarrese P et al (2012) Dynamics of mitochondrial raft-like microdomains in cell life and death. Commun Integr Biol 5:217–219

Ilangumaran S, Hoessli DC (1998) Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 335(Pt 2):433–440

Vilimanovich U, Bosnjak M, Bogdanovic A et al (2015) Statin-mediated inhibition of cholesterol synthesis induces cytoprotective autophagy in human leukemic cells. Eur J Pharmacol 765:415–428

Stancu C, Sima A (2001) Statins: mechanism of action and effects. J Cell Mol Med 5:378–387

Mahammad S, Parmryd I (2015) Cholesterol depletion using methyl-beta-cyclodextrin. Methods Mol Biol 1232:91–102

Bramkamp M, Lopez D (2015) Exploring the existence of lipid rafts in bacteria. Microbiol Mol Biol Rev 79:81–100

Barak I, Muchova K (2013) The role of lipid domains in bacterial cell processes. Int J Mol Sci 14:4050–4065

Lopez D, Kolter R (2010) Functional microdomains in bacterial membranes. Genes Dev 24:1893–1902

Lopez D, Koch G (2017) Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol 36:76–84

LaRocca TJ, Pathak P, Chiantia S et al (2013) Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts. PLoS Pathog 9:e1003353

Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

Gupta N, Wollscheid B, Watts JD et al (2006) Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol 7:625–633

Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100:5813–5818

Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445–458

Cohen AW, Park DS, Woodman SE et al (2003) Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284:C457–C474

Park DS, Cohen AW, Frank PG et al (2003) Caveolin-1 null (−/−) mice show dramatic reductions in life span. Biochemistry 42:15124–15131

Razani B, Engelman JA, Wang XB et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

Chang S-H, Feng D, Nagy JA et al (2009) Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am J Pathol 175:1768–1776

Wang XM, Zhang Y, Kim HP et al (2006) Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med 203:2895–2906

Hino M, Doihara H, Kobayashi K et al (2003) Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today 33:486–490

Engelman JA, Zhang XL, Razani B et al (1999) p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J Biol Chem 274:32333–32341

Rimessi A, Marchi S, Patergnani S, Pinton P (2014) H-Ras-driven tumoral maintenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene 33:2329–2340

Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190

Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271:3863–3868

Gottlieb-Abraham E, Shvartsman DE, Donaldson JC et al (2013) Src-mediated caveolin-1 phosphorylation affects the targeting of active Src to specific membrane sites. Mol Biol Cell 24:3881–3895

Chatterjee M, Ben-Josef E, Thomas DG et al (2015) Caveolin-1 is associated with tumor progression and confers a multi-modality resistance phenotype in pancreatic cancer. Sci Rep 5:10867

Arpaia E, Blaser H, Quintela-Fandino M et al (2012) The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 31:884–896

Thomas S, Overdevest JB, Nitz MD et al (2011) Src and caveolin-1 reciprocally regulate metastasis via a common downstream signaling pathway in bladder cancer. Cancer Res 71:832–841

Lee H, Park DS, Razani B et al (2002) Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. Am J Pathol 161:1357–1369

Wiechen K, Diatchenko L, Agoulnik A et al (2001) Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 159:1635–1643

Racine C, Belanger M, Hirabayashi H et al (1999) Reduction of caveolin 1 gene expression in lung carcinoma cell lines. Biochem Biophys Res Commun 255:580–586

Bender FC, Reymond MA, Bron C, Quest AF (2000) Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res 60:5870–5878

Polyak E, Boopathi E, Mohanan S et al (2009) Alterations in caveolin expression and ultrastructure after bladder smooth muscle hypertrophy. J Urol 182:2497–2503

Kato K, Hida Y, Miyamoto M et al (2002) Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 94:929–933

Ito Y, Yoshida H, Nakano K et al (2002) Caveolin-1 overexpression is an early event in the progression of papillary carcinoma of the thyroid. Br J Cancer 86:912–916

Tahir SA, Ren C, Timme TL et al (2003) Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer. Clin Cancer Res 9:3653–3659

Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140

Staubach S, Hanisch F-G (2011) Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteom 8:263–277

Stuermer CAO (2010) The reggie/flotillin connection to growth. Trends Cell Biol 20:6–13

Stuermer CAO (2011) Reggie/flotillin and the targeted delivery of cargo. J Neurochem 116:708–713

Babuke T, Tikkanen R (2007) Dissecting the molecular function of reggie/flotillin proteins. Eur J Cell Biol 86:525–532

Patel HH, Insel PA (2009) Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 11:1357–1372

Li P-L, Gulbins E (2007) Lipid rafts and redox signaling. Antioxid Redox Signal 9:1411–1415

Catalgol B, Kartal Ozer N (2010) Lipid rafts and redox regulation of cellular signaling in cholesterol induced atherosclerosis. Curr Cardiol Rev 6:309–324

Guichard C, Pedruzzi E, Dewas C et al (2005) Interleukin-8-induced priming of neutrophil oxidative burst requires sequential recruitment of NADPH oxidase components into lipid rafts. J Biol Chem 280:37021–37032

Shao D, Segal AW, Dekker LV (2003) Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett 550:101–106

Li J-M, Shah AM (2003) ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 14:S221–S226

Yang H-C, Cheng M-L, Ho H-Y, Chiu DT-Y (2011) The microbicidal and cytoregulatory roles of NADPH oxidases. Microbes Infect 13:109–120

Oakley FD, Abbott D, Li Q, Engelhardt JF (2009) Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal 11:1313–1333

Vilhardt F, van Deurs B (2004) The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J 23:739–748

Beneteau M, Pizon M, Chaigne-Delalande B et al (2008) Localization of Fas/CD95 into the lipid rafts on down-modulation of the phosphatidylinositol 3-kinase signaling pathway. Mol Cancer Res 6:604–613

Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697

Scheel-Toellner D, Wang K, Singh R et al (2002) The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun 297:876–879

Gajate C, Mollinedo F (2011) Lipid rafts and Fas/CD95 signaling in cancer chemotherapy. Recent Pat Anticancer Drug Discov 6:274–283

Smith EL, Schuchman EH (2008) The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J Off Publ Fed Am Soc Exp Biol 22:3419–3431

Zhang AY, Yi F, Jin S et al (2007) Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9:817–828

Yi F, Zhang AY, Janscha JL et al (2004) Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int 66:1977–1987

Yang B, Oo TN, Rizzo V (2006) Lipid rafts mediate H2O2 prosurvival effects in cultured endothelial cells. FASEB J Off Publ Fed Am Soc Exp Biol 20:1501–1503

Rosenberger CM, Brumell JH, Finlay BB (2000) Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol 10:R823–R825

Manes S, del Real G, Martinez-A C (2003) Pathogens: raft hijackers. Nat Rev Immunol 3:557–568

Le Bouguenec C (2005) Adhesins and invasins of pathogenic Escherichia coli. Int J Med Microbiol 295:471–478

Preta G, Lotti V, Cronin JG, Sheldon IM (2015) Protective role of the dynamin inhibitor Dynasore against the cholesterol-dependent cytolysin of Trueperella pyogenes. FASEB J Off Publ Fed Am Soc Exp Biol 29:1516–1528

Taylor SD, Sanders ME, Tullos NA et al (2013) The cholesterol-dependent cytolysin pneumolysin from Streptococcus pneumoniae binds to lipid raft microdomains in human corneal epithelial cells. PLoS One 8:e61300

Gekara NO, Jacobs T, Chakraborty T, Weiss S (2005) The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 7:1345–1356

Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647–1650

Norkin LC (1999) Simian virus 40 infection via MHC class I molecules and caveolae. Immunol Rev 168:13–22

Bavari S, Bosio CM, Wiegand E et al (2002) Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195:593–602

Mikulak J, Singhal PC (2010) HIV-1 entry into human podocytes is mediated through lipid rafts. Kidney Int 77:72–74

Campbell SM, Crowe SM, Mak J (2001) Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J Clin Virol 22:217–227

Lorizate M, Sachsenheimer T, Glass B et al (2013) Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cell Microbiol 15:292–304

Olliaro P, Castelli F (1997) Plasmodium falciparum: an electron microscopy study of caveolae and trafficking between the parasite and the extracellular medium. Int J Parasitol 27:1007–1012

Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1:233–248

Schuck S, Honsho M, Ekroos K et al (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci USA 100:5795–5800

Drab M, Verkade P, Elger M et al (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

Schubert W, Frank PG, Woodman SE et al (2002) Microvascular hyperpermeability in caveolin-1 (−/−) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098

Deng C, Zhang P, Harper JW et al (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684

Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324

Bonifacio A, Cervo S, Sergo V (2015) Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications. Anal Bioanal Chem 407:8265–8277

Suga K, Yoshida T, Ishii H, Okamoto Y, Nagao D, Konno M, Umakoshi H (2015) Membrane surface-enhanced raman spectroscopy for sensitive detection of molecular behavior of lipid assemblies. Anal Chem 87(9):4772–4780

Shin D-M, Yang C-S, Lee J-Y et al (2008) Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C zeta in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages. Cell Microbiol 10:1893–1905

Vieira FS, Correa G, Einicker-Lamas M, Coutinho-Silva R (2010) Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 102:391–407

Seveau S, Bierne H, Giroux S et al (2004) Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J Cell Biol 166:743–753

Cruz KD, Cruz TA, Veras de Moraes G et al (2014) Disruption of lipid rafts interferes with the interaction of Toxoplasma gondii with macrophages and epithelial cells. Biomed Res Int 2014:687835

Li YC, Park MJ, Ye S-K et al (2006) Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 168:1105–1107

Onodera R, Motoyama K, Okamatsu A et al (2013) Involvement of cholesterol depletion from lipid rafts in apoptosis induced by methyl-beta-cyclodextrin. Int J Pharm 452:116–123

Heung LJ, Luberto C, Del Poeta M (2006) Role of sphingolipids in microbial pathogenesis. Infect Immun 74:28–39

Gulbins E, Dreschers S, Wilker B, Grassme H (2004) Ceramide, membrane rafts and infections. J Mol Med (Berl) 82:357–363

Bagam P, Singh DP, Inda ME, Batra S (2017) Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 33:429–455

McConnell HM, Tamm LK, Weis RM (1984) Periodic structures in lipid monolayer phase transitions. Proc Natl Acad Sci USA 81:3249–3253

Simon A, Girard-Egrot A, Sauter F et al (2007) Formation and stability of a suspended biomimetic lipid bilayer on silicon submicrometer-sized pores. J Colloid Interface Sci 308:337–343

Heitz BA, Xu J, Jones IW et al (2011) Polymerized planar suspended lipid bilayers for single ion channel recordings: comparison of several dienoyl lipids. Langmuir 27:1882–1890

Tamm LK, McConnell HM (1985) Supported phospholipid bilayers. Biophys J 47:105–113

Budvytyte R, Valincius G, Niaura G et al (2013) Structure and properties of tethered bilayer lipid membranes with unsaturated anchor molecules. Langmuir 29:8645–8656

Cranfield C, Carne S, Martinac B, Cornell B (2015) The assembly and use of tethered bilayer lipid membranes (tBLMs). Methods Mol Biol 1232:45–53

Preta G, Jankunec M, Heinrich F et al (2016) Tethered bilayer membranes as a complementary tool for functional and structural studies: the pyolysin case. Biochim Biophys Acta 1858:2070–2080

Kahya N, Brown DA, Schwille P (2005) Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44:7479–7489

Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083

Simons K, Vaz WLC (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295

Dietrich C, Bagatolli LA, Volovyk ZN et al (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

Dupuy AD, Engelman DM (2008) Protein area occupancy at the center of the red blood cell membrane. Proc Natl Acad Sci USA 105:2848–2852

Levental KR, Levental I (2015) Giant plasma membrane vesicles: models for understanding membrane organization. Curr Top Membr 75:25–57

Levental I, Byfield FJ, Chowdhury P et al (2009) Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochem J 424:163–167

Sezgin E, Kaiser H-J, Baumgart T et al (2012) Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc 7:1042–1051

Ray S, Taylor M, Banerjee T et al (2012) Lipid rafts alter the stability and activity of the cholera toxin A1 subunit. J Biol Chem 287:30395–30405

Gupta N, DeFranco AL (2003) Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol Biol Cell 14:432–444

Pathak P, London E (2015) The effect of membrane lipid composition on the formation of lipid ultrananodomains. Biophys J 109:1630–1638

Engel S, Scolari S, Thaa B et al (2010) FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts. Biochem J 425:567–573

Sachl R, Johansson LB-A, Hof M (2012) Forster resonance energy transfer (FRET) between heterogeneously distributed probes: application to lipid nanodomains and pores. Int J Mol Sci 13:16141–16156

Rao M, Mayor S (2005) Use of Forster’s resonance energy transfer microscopy to study lipid rafts. Biochim Biophys Acta 1746:221–233

Loura L, Prieto M (2011) FRET in membrane biophysics: an overview. Front Physiol 2:82. https://doi.org/10.3389/fphys.2011.00082

Chiantia S, Ries J, Schwille P (2009) Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim Biophys Acta 1788:225–233

Kahya N, Schwille P (2006) Fluorescence correlation studies of lipid domains in model membranes. Mol Membr Biol 23:29–39

He H-T, Marguet D (2011) Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu Rev Phys Chem 62:417–436

Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18:361–374

Sezgin E, Levental I, Grzybek M et al (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818:1777–1784

Kinoshita M, Suzuki KGN, Matsumori N et al (2017) Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J Cell Biol 216:1183–1204

Kraft ML (2016) Sphingolipid organization in the plasma membrane and the mechanisms that influence it. Front cell Dev Biol 4:154

Boslem E, Weir JM, MacIntosh G et al (2013) Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic beta-cells. J Biol Chem 288:26569–26582

Sorice M, Manganelli V, Matarrese P et al (2009) Cardiolipin-enriched raft-like microdomains are essential activating platforms for apoptotic signals on mitochondria. FEBS Lett 583:2447–2450

Scorrano L (2008) Caspase-8 goes cardiolipin: a new platform to provide mitochondria with microdomains of apoptotic signals? J Cell Biol 183:579–581

El Khoury M, Swain J, Sautrey G et al (2017) Targeting bacterial cardiolipin enriched microdomains: an antimicrobial strategy used by amphiphilic aminoglycoside antibiotics. Sci Rep 7:10697

Ciarlo L, Manganelli V, Garofalo T et al (2010) Association of fission proteins with mitochondrial raft-like domains. Cell Death Differ 17:1047–1058

Ziolkowski W, Szkatula M, Nurczyk A et al (2010) Methyl-beta-cyclodextrin induces mitochondrial cholesterol depletion and alters the mitochondrial structure and bioenergetics. FEBS Lett 584:4606–4610

Krols M, van Isterdael G, Asselbergh B et al (2016) Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol 131:505–523

Ciarlo L, Manganelli V, Matarrese P et al (2012) Raft-like microdomains play a key role in mitochondrial impairment in lymphoid cells from patients with Huntington’s disease. J Lipid Res 53:2057–2068

Sorice M, Garofalo T, Misasi R et al (2012) Ganglioside GD3 as a raft component in cell death regulation. Anticancer Agents Med Chem 12:376–382

Mattei V, Matarrese P, Garofalo T et al (2011) Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution. Mol Biol Cell 22:4842–4853

Sorice M, Mattei V, Tasciotti V et al (2012) Trafficking of PrPc to mitochondrial raft-like microdomains during cell apoptosis. Prion 6:354–358

Faris R, Moore RA, Ward A et al (2017) Cellular prion protein is present in mitochondria of healthy mice. Sci Rep 7:41556

Thanan R, Oikawa S, Hiraku Y et al (2014) Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 16:193–217

Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003–2014

Di Carlo M, Giacomazza D, Picone P et al (2012) Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic Res 46:1327–1338

Schuessel K, Frey C, Jourdan C et al (2006) Aging sensitizes toward ROS formation and lipid peroxidation in PS1M146L transgenic mice. Free Radic Biol Med 40:850–862

Gueraud F, Atalay M, Bresgen N et al (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124

Okayasu T, Curtis MT, Farber JL (1985) Structural alterations of the inner mitochondrial membrane in ischemic liver cell injury. Arch Biochem Biophys 236:638–645

Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E (1997) Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Lett 406:136–138

Ha EE-J, Frohman MA (2014) Regulation of mitochondrial morphology by lipids. BioFactors 40:419–424

Nakamura K, Nemani VM, Azarbal F et al (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286:20710–20726

Chan EYL, McQuibban GA (2012) Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1). J Biol Chem 287:40131–40139

Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473

Dall’Armi C, Devereaux KA, Di Paolo G (2013) The role of lipids in the control of autophagy. Curr Biol 23:R33–R45

Wu Y, Cheng S, Zhao H et al (2014) PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation. EMBO Rep 15:973–981

Hao F, Itoh T, Morita E et al (2016) The PtdIns3-phosphatase MTMR3 interacts with mTORC1 and suppresses its activity. FEBS Lett 590:161–173

Kumar A, Baycin-Hizal D, Zhang Y et al (2015) Cellular traffic cops: the interplay between lipids and proteins regulates vesicular formation, trafficking, and signaling in mammalian cells. Curr Opin Biotechnol 36:215–221

Czubowicz K, Strosznajder R (2014) Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine-1-phosphate. Mol Neurobiol 50:26–37

Pelled D, Raveh T, Riebeling C et al (2002) Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J Biol Chem 277:1957–1961

Widau RC, Jin Y, Dixon SA et al (2010) Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J Biol Chem 285:13827–13838

Cuervo AM (2010) Chaperone-mediated autophagy: selectivity pays off. Trends Endocrinol Metab 21:142–150

Rodriguez-Navarro JA, Kaushik S, Koga H et al (2012) Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc Natl Acad Sci USA 109:E705–E714

Toops KA, Tan LX, Jiang Z et al (2015) Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell 26:1–14

King MA, Ganley IG, Flemington V (2016) Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells. Oncogene 35:4518–4528

Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041

Dong H, Czaja MJ (2011) Regulation of lipid droplets by autophagy. Trends Endocrinol Metab 22:234–240

Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20:3–11

Wang C-W (2016) Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta 1861:793–805

Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

Ward C, Martinez-Lopez N, Otten EG et al (2016) Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta 1861:269–284

Albi E, Viola Magni MP (2004) The role of intranuclear lipids. Biol Cell 96:657–667

Albi E, Lazzarini A, Lazzarini R et al (2013) Nuclear lipid microdomain as place of interaction between sphingomyelin and DNA during liver regeneration. Int J Mol Sci 14:6529–6541

Irvine RF (2003) Nuclear lipid signalling. Nat Rev Mol Cell Biol 4:349–360

Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318:1412–1416

Albi E (2011) Role of intranuclear lipids in health and disease. Clin Lipidol 6:59–69

Cocco L, Faenza I, Fiume R et al (2006) Phosphoinositide-specific phospholipase C (PI-PLC) beta1 and nuclear lipid-dependent signaling. Biochim Biophys Acta 1761:509–521

Lin H, Choi JH, Hasek J et al (2000) Phospholipase C is involved in kinetochore function in Saccharomyces cerevisiae. Mol Cell Biol 20:3597–3607

Cerbon J, Falcon A, Hernandez-Luna C, Segura-Cobos D (2005) Inositol phosphoceramide synthase is a regulator of intracellular levels of diacylglycerol and ceramide during the G1 to S transition in Saccharomyces cerevisiae. Biochem J 388:169–176

Ibarguren M, Bomans PHH, Frederik PM et al (2010) End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Biochim Biophys Acta 1798:59–64

Ruvolo PP (2001) Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia 15:1153–1160

Hertz R, Magenheim J, Berman I, Bar-Tana J (1998) Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4alpha. Nature 392:512–516

Shoji-Kawaguchi M, Izuta S, Tamiya-Koizumi K et al (1995) Selective inhibition of DNA polymerase epsilon by phosphatidylinositol. J Biochem 117:1095–1099

Tamiya-Koizumi K (2002) Nuclear lipid metabolism and signaling. J Biochem 132:13–22

van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

Sleight RG (1987) Intracellular lipid transport in eukaryotes. Annu Rev Physiol 49:193–208

Rueckert DG, Schmidt K (1990) Lipid transfer proteins. Chem Phys Lipids 56:1–20

Holthuis JCM, van Meer G, Huitema K (2003) Lipid microdomains, lipid translocation and the organization of intracellular membrane transport (Review). Mol Membr Biol 20:231–241

Bittman R, Clejan S, Robinson BP, Witzke NM (1985) Kinetics of cholesterol and phospholipid exchange from membranes containing cross-linked proteins or cross-linked phosphatidylethanolamines. Biochemistry 24:1403–1409

Vahouny GV, Chanderbhan R, Kharroubi A et al (1987) Sterol carrier and lipid transfer proteins. Adv Lipid Res 22:83–113

Lidstrom-Olsson B, Wikvall K (1986) The role of sterol carrier protein2 and other hepatic lipid-binding proteins in bile-acid biosynthesis. Biochem J 238:879–884

Stolowich NJ, Petrescu AD, Huang H et al (2002) Sterol carrier protein-2: structure reveals function. Cell Mol Life Sci 59:193–212

Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

Trapani L, Segatto M, Pallottini V (2012) Regulation and deregulation of cholesterol homeostasis: the liver as a metabolic “power station”. World J Hepatol 4:184–190

Baur JA, Chen D, Chini EN et al (2010) Dietary restriction: standing up for sirtuins. Science 329:1012–1014

Girard E, Paul JL, Fournier N et al (2011) The dynamin chemical inhibitor dynasore impairs cholesterol trafficking and sterol-sensitive genes transcription in human HeLa cells and macrophages. PLoS One 6:e29042

Preta G, Cronin JG, Sheldon IM (2015) Dynasore—not just a dynamin inhibitor. Cell Commun Signal 13:24

Sturbois B, Moreau P, Maneta-Peyret L et al (1994) Cell-free transfer of phospholipids between the endoplasmic reticulum and the Golgi apparatus of leek seedlings. Biochim Biophys Acta 1189:31–37

Moreau P, Rodriguez M, Cassagne C et al (1991) Trafficking of lipids from the endoplasmic reticulum to the Golgi apparatus in a cell-free system from rat liver. J Biol Chem 266:4322–4328

Fukasawa M, Nishijima M, Hanada K (1999) Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells. J Cell Biol 144:673–685

Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24:44–52

Yang X, Yu Y, Wang D, Qin S (2017) Overexpressed PLTP in macrophage may promote cholesterol accumulation by prolonged endoplasmic reticulum stress. Med Hypotheses 98:45–48

Vuletic S, Dong W, Wolfbauer G et al (2009) PLTP is present in the nucleus, and its nuclear export is CRM1-dependent. Biochim Biophys Acta 1793:584–591

Ferkingstad E, Frigessi A, Lyng H (2008) Indirect genomic effects on survival from gene expression data. Genome Biol 9(3):R58

Cronan JE (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224

Kaiser H-J, Surma MA, Mayer F et al (2011) Molecular convergence of bacterial and eukaryotic surface order. J Biol Chem 286:40631–40637

Lopez D (2015) Molecular composition of functional microdomains in bacterial membranes. Chem Phys Lipids 192:3–11

Cybulski LE, Martin M, Mansilla MC et al (2010) Membrane thickness cue for cold sensing in a bacterium. Curr Biol 20:1539–1544

Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686

Arendt W, Hebecker S, Jager S et al (2012) Resistance phenotypes mediated by aminoacyl-phosphatidylglycerol synthases. J Bacteriol 194:1401–1416

Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40:133–159

Mizoguchi T, Harada J, Yoshitomi T, Tamiaki H (2013) A variety of glycolipids in green photosynthetic bacteria. Photosynth Res 114:179–188

Mansilla MC, Cybulski LE, Albanesi D, de Mendoza D (2004) Control of membrane lipid fluidity by molecular thermosensors. J Bacteriol 186:6681–6688

Donovan C, Bramkamp M (2009) Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 155:1786–1799

Devi SN, Vishnoi M, Kiehler B et al (2015) In vivo functional characterization of the transmembrane histidine kinase KinC in Bacillus subtilis. Microbiology 161:1092–1104

Dempwolff F, Schmidt FK, Hervas AB et al (2016) Super resolution fluorescence microscopy and tracking of bacterial flotillin (Reggie) paralogs provide evidence for defined-sized protein microdomains within the bacterial membrane but absence of clusters containing detergent-resistant proteins. PLoS Genet 12:e1006116

Schneider J, Klein T, Mielich-Suss B et al (2015) Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium. PLoS Genet 11:e1005140

Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

Hoekstra D, van Ijzendoorn SCD (2003) In search of lipid translocases and their biological functions. Dev Cell 4:8–9

Ikeda M, Kihara A, Igarashi Y (2006) Lipid asymmetry of the eukaryotic plasma membrane: functions and related enzymes. Biol Pharm Bull 29:1542–1546

Henderson CM, Block DE (2014) Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 80:2966–2972

Henderson CM, Lozada-Contreras M, Naravane Y et al (2011) Analysis of major phospholipid species and ergosterol in fermenting industrial yeast strains using atmospheric pressure ionization ion-trap mass spectrometry. J Agric Food Chem 59:12761–12770

Vanegas JM, Contreras MF, Faller R, Longo ML (2012) Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys J 102:507–516

Laurinyecz B, Peter M, Vedelek V et al (2016) Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in Drosophila. Open Biol 6:50169

Guan XL, Cestra G, Shui G et al (2013) Biochemical membrane lipidomics during Drosophila development. Dev Cell 24:98–111

Ghosh A, Kling T, Snaidero N et al (2013) A global in vivo Drosophila RNAi screen identifies a key role of ceramide phosphoethanolamine for glial ensheathment of axons. PLoS Genet 9:e1003980

Fan W, Lam SM, Xin J et al (2017) Drosophila TRF2 and TAF9 regulate lipid droplet size and phospholipid fatty acid composition. PLoS Genet 13:e1006664

Wahlby C, Conery AL, Bray M-A et al (2014) High- and low-throughput scoring of fat mass and body fat distribution in C. elegans. Methods 68:492–499

Yen K, Le TT, Bansal A et al (2010) A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. PLoS One 5:e12810

Zhang P, Na H, Liu Z et al (2012) Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteom 11:317–328

Mullaney BC, Ashrafi K (2009) C. elegans fat storage and metabolic regulation. Biochim Biophys Acta 1791:474–478

McKay RM, McKay JP, Avery L, Graff JM (2003) C elegans: a model for exploring the genetics of fat storage. Dev Cell 4:131–142

Hirsch D, Stahl A, Lodish HF (1998) A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci USA 95:8625–8629

Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

Galbiati F, Razani B, Lisanti MP (2001) Emerging themes in lipid rafts and caveolae. Cell 106:403–411

Oakley FD, Smith RL, Engelhardt JF (2009) Lipid rafts and caveolin-1 coordinate interleukin-1beta (IL-1beta)-dependent activation of NFkappaB by controlling endocytosis of Nox2 and IL-1beta receptor 1 from the plasma membrane. J Biol Chem 284:33255–33264

Ikeguchi M, Makino M, Kaibara N (2001) Clinical significance of E-cadherin-catenin complex expression in metastatic foci of colorectal carcinoma. J Surg Oncol 77:201–207

Jiang WG, Mansel RE (2000) E-cadherin complex and its abnormalities in human breast cancer. Surg Oncol 9:151–171

Mollinedo F, Gajate C (2006) Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat 9:51–73

Simpson-Holley M, Ellis D, Fisher D et al (2002) A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301:212–225

Lin S-L, Chien C-W, Han C-L et al (2010) Temporal proteomics profiling of lipid rafts in CCR6-activated T cells reveals the integration of actin cytoskeleton dynamics. J Proteome Res 9:283–297

Shimizu Y (2001) Moving Ras in and out of lipid rafts. Trends Immunol 22:352

Parton RG, Hancock JF (2004) Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol 14:141–147

Del Pozo MA (2004) Integrin signaling and lipid rafts. Cell Cycle 3:725–728

Leitinger B, Hogg N (2002) The involvement of lipid rafts in the regulation of integrin function. J Cell Sci 115:963–972

Vassilieva EV, Gerner-Smidt K, Ivanov AI, Nusrat A (2008) Lipid rafts mediate internalization of beta1-integrin in migrating intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 295:G965–G976

Wang C, Yoo Y, Fan H et al (2010) Regulation of Integrin beta 1 recycling to lipid rafts by Rab1a to promote cell migration. J Biol Chem 285:29398–29405

Lee J-L, Wang M-J, Sudhir P-R, Chen J-Y (2008) CD44 engagement promotes matrix-derived survival through the CD44-SRC-integrin axis in lipid rafts. Mol Cell Biol 28:5710–5723

Oliferenko S, Paiha K, Harder T et al (1999) Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol 146:843–854

Qian H, Xia L, Ling P et al (2012) CD44 ligation with A3D8 antibody induces apoptosis in acute myeloid leukemia cells through binding to CD44s and clustering lipid rafts. Cancer Biol Ther 13:1276–1283

Singleton PA, Bourguignon LYW (2004) CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Exp Cell Res 295:102–118

Nishikawa M, Nojima S, Akiyama T et al (1984) Interaction of digitonin and its analogs with membrane cholesterol. J Biochem 96:1231–1239

Gardner JA, Gainsborough H, Murray R (1938) Studies in the cholesterol content of normal human plasma: an improved macromethod for the estimation of cholesterol by digitonin. Biochem J 32:15–18

Bittman R, Blau L, Clejan S, Rottem S (1981) Determination of cholesterol asymmetry by rapid kinetics of filipin-cholesterol association: effect of modification in lipids and proteins. Biochemistry 20:2425–2432

Behnke O, Tranum-Jensen J, van Deurs B (1984) Filipin as a cholesterol probe. II. Filipin-cholesterol interaction in red blood cell membranes. Eur J Cell Biol 35:200–215

Singer MA (1975) Interaction of amphotericin B and nystatin with phospholipid bilayer membranes: effect of cholesterol. Can J Physiol Pharmacol 53:1072–1079

Kuipers HF, van den Elsen PJ (2007) Immunomodulation by statins: inhibition of cholesterol vs. isoprenoid biosynthesis. Biomed Pharmacother 61:400–407

Griffin S, Preta G, Sheldon IM (2017) Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin. Sci Rep 7(1):17050

Marasas WFO, Riley RT, Hendricks KA et al (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716

Merrill AHJ, Sullards MC, Wang E et al (2001) Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect 109(Suppl):283–289

Lee Y-S, Choi K-M, Lee S et al (2012) Myriocin, a serine palmitoyltransferase inhibitor, suppresses tumor growth in a murine melanoma model by inhibiting de novo sphingolipid synthesis. Cancer Biol Ther 13:92–100

Delgado A, Casas J, Llebaria A et al (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim Biophys Acta 1758:1957–1977

Megha London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279:9997–10004

Yu C, Alterman M, Dobrowsky RT (2005) Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1. J Lipid Res 46:1678–1691

Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531:47–53