Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses
Tài liệu tham khảo
Martin-Acebes, 2013, Lipid involvement in viral infections: present and future perspectives for the design of antiviral strategies, 291
Heaton, 2011, Multifaceted roles for lipids in viral infection, Trends Microbiol., 19, 368, 10.1016/j.tim.2011.03.007
Schneider-Schaulies, 2015, Sphingolipids in viral infection, Biol. Chem., 396, 585, 10.1515/hsz-2014-0273
Filipe, 2015, Hepatitis C virus and lipid droplets: finding a niche, Trends Mol. Med., 21, 34, 10.1016/j.molmed.2014.11.003
Lorizate, 2011, Role of lipids in virus replication, Cold Spring Harb. Perspect. Biol., 3, a004820, 10.1101/cshperspect.a004820
Gould, 2008, Pathogenic flaviviruses, Lancet, 371, 500, 10.1016/S0140-6736(08)60238-X
Martin-Acebes, 2012, West Nile virus: a re-emerging pathogen revisited, World J. Virol., 1, 51, 10.5501/wjv.v1.i2.51
Mackenzie, 2004, Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses, Nat. Med., 10, S98, 10.1038/nm1144
Guzman, 2015, Dengue, Lancet, 385, 453, 10.1016/S0140-6736(14)60572-9
Patel, 2015, Long-term sequelae of West Nile virus-related illness: a systematic review, Lancet Infect. Dis., 15, 951, 10.1016/S1473-3099(15)00134-6
Saiz, 2016, Zika virus: the latest newcomer, Front. Microbiol.
Heinz, 2012, Flaviviruses and flavivirus vaccines, Vaccine, 30, 4301, 10.1016/j.vaccine.2011.09.114
Kiran, 2015, Kyasanur Forest disease outbreak and vaccination strategy, Shimoga District, India, 2013–2014, Emerg. Infect. Dis., 21, 146, 10.3201/eid2101.141227
Ishikawa, 2014
Kok, 2016, New developments in flavivirus drug discovery, Expert Opin. Drug Discovery, 10.1517/17460441.2016.1160887
Kilpatrick, 2011, Globalization, land use, and the invasion of West Nile virus, Science, 334, 323, 10.1126/science.1201010
Gould, 2009, Impact of climate change and other factors on emerging arbovirus diseases, Trans. R. Soc. Trop. Med. Hyg., 103, 109, 10.1016/j.trstmh.2008.07.025
Rico-Hesse, 2010, Dengue virus virulence and transmission determinants, Curr. Top. Microbiol. Immunol., 338, 45
Lambrechts, 2010, Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission, PLoS Negl. Trop. Dis., 4, 10.1371/journal.pntd.0000646
Jansen, 2010, The dengue vector Aedes aegypti: what comes next, Microbes Infect., 12, 272, 10.1016/j.micinf.2009.12.011
Lanciotti, 1999, Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States, Science, 286, 2333, 10.1126/science.286.5448.2333
Bhatt, 2013, The global distribution and burden of dengue, Nature, 496, 504, 10.1038/nature12060
Murray, 2008, Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis, Nat. Rev. Microbiol., 6, 699, 10.1038/nrmicro1928
Pierson, 2013, Flaviviruses, 747
Mukhopadhyay, 2003, Structure of West Nile virus, Science, 302, 248, 10.1126/science.1089316
Kuhn, 2002, Structure of dengue virus: implications for flavivirus organization, maturation, and fusion, Cell, 108, 717, 10.1016/S0092-8674(02)00660-8
Sirohi, 2016, The 3.8A resolution cryo-EM structure of Zika virus, Science, 10.1126/science.aaf5316
Pierson, 2012, Degrees of maturity: the complex structure and biology of flaviviruses, Curr. Opin. Virol., 2, 168, 10.1016/j.coviro.2012.02.011
Mukhopadhyay, 2005, A structural perspective of the flavivirus life cycle, Nat. Rev. Microbiol., 3, 13, 10.1038/nrmicro1067
Perera-Lecoin, 2013, Flavivirus entry receptors: an update, Virus, 6, 69, 10.3390/v6010069
van der Schaar, 2008, Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells, PLoS Pathog., 4, 10.1371/journal.ppat.1000244
Kalia, 2013, Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism, J. Virol., 87, 148, 10.1128/JVI.01399-12
Zhu, 2012, Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway, J. Virol., 86, 13407, 10.1128/JVI.00903-12
Cruz-Oliveira, 2015, Receptors and routes of dengue virus entry into the host cells, FEMS Microbiol. Rev., 39, 155, 10.1093/femsre/fuu004
Amara, 2015, Viral apoptotic mimicry, Nat. Rev. Microbiol., 13, 461, 10.1038/nrmicro3469
Pierson, 2013, Flaviviruses: braking the entering, Curr. Opin. Virol., 3, 3, 10.1016/j.coviro.2012.12.001
Stiasny, 2009, Molecular mechanisms of flavivirus membrane fusion, Amino Acids
Paul, 2015, Flaviviridae replication organelles: oh, what a tangled web we weave, Annu. Rev. Virol., 2, 289, 10.1146/annurev-virology-100114-055007
Harak, 2015, Ultrastructure of the replication sites of positive-strand RNA viruses, Virology, 479–480, 418, 10.1016/j.virol.2015.02.029
Apte-Sengupta, 2014, Coupling of replication and assembly in flaviviruses, Curr. Opin. Virol., 9, 134, 10.1016/j.coviro.2014.09.020
Cui, 2013, Serum metabolome and lipidome changes in adult patients with primary dengue infection, PLoS Negl. Trop. Dis., 7, 10.1371/journal.pntd.0002373
van Gorp, 2002, Changes in the plasma lipid profile as a potential predictor of clinical outcome in dengue hemorrhagic fever, Clin. Infect. Dis., 34, 1150, 10.1086/339539
Duran, 2015, Association of lipid profile alterations with severe forms of dengue in humans, Arch. Virol., 160, 1687, 10.1007/s00705-015-2433-z
Biswas, 2015, Lower low-density lipoprotein cholesterol levels are associated with severe dengue outcome, PLoS Negl. Trop. Dis., 9, 10.1371/journal.pntd.0003904
Perera, 2012, Dengue virus infection perturbs lipid homeostasis in infected mosquito cells, PLoS Pathog., 8, 10.1371/journal.ppat.1002584
Martin-Acebes, 2014, The composition of west nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis, J. Virol., 88, 12041, 10.1128/JVI.02061-14
Merrill, 2011, Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics, Chem. Rev., 111, 6387, 10.1021/cr2002917
Gault, 2010, An overview of sphingolipid metabolism: from synthesis to breakdown, Adv. Exp. Med. Biol., 688, 1, 10.1007/978-1-4419-6741-1_1
Carocci, 2015, The bioactive lipid 4-hydroxyphenyl retinamide inhibits flavivirus replication, Antimicrob. Agents Chemother., 59, 85, 10.1128/AAC.04177-14
Kitatani, 2008, The sphingolipid salvage pathway in ceramide metabolism and signaling, Cell. Signal., 20, 1010, 10.1016/j.cellsig.2007.12.006
Aktepe, 2015, Differential utilisation of ceramide during replication of the flaviviruses West Nile and dengue virus, Virology, 484, 241, 10.1016/j.virol.2015.06.015
Menzel, 2012, MAP-kinase regulated cytosolic phospholipase A2 activity is essential for production of infectious hepatitis C virus particles, PLoS Pathog., 8, 10.1371/journal.ppat.1002829
Mackenzie, 2007, Cholesterol manipulation by West Nile virus perturbs the cellular immune response, Cell Host Microbe, 2, 229, 10.1016/j.chom.2007.09.003
Soto-Acosta, 2013, The increase in cholesterol levels at early stages after dengue virus infection correlates with an augment in LDL particle uptake and HMG-CoA reductase activity, Virology, 442, 132, 10.1016/j.virol.2013.04.003
Hirata, 2012, Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis, PLoS Pathog., 8, 10.1371/journal.ppat.1002860
Diamond, 2010, Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics, PLoS Pathog., 6, 10.1371/journal.ppat.1000719
Tong, 2006, Acetyl-coenzyme A carboxylases: versatile targets for drug discovery, J. Cell. Biochem., 99, 1476, 10.1002/jcb.21077
Asturias, 2005, Structure and molecular organization of mammalian fatty acid synthase, Nat. Struct. Mol. Biol., 12, 225, 10.1038/nsmb899
Smith, 2003, Structural and functional organization of the animal fatty acid synthase, Prog. Lipid Res., 42, 289, 10.1016/S0163-7827(02)00067-X
Merino-Ramos, 2016, Modification of the host cell lipid metabolism induced by hypolipidemic drugs targeting the acetyl coenzyme a carboxylase impairs West Nile virus replication, Antimicrob. Agents Chemother., 60, 307, 10.1128/AAC.01578-15
Heaton, 2010, Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis, Proc. Natl. Acad. Sci. U. S. A., 107, 17345, 10.1073/pnas.1010811107
Martin-Acebes, 2011, West nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids, PLoS One, 6, 10.1371/journal.pone.0024970
Tang, 2014, Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication, J. Virol., 88, 6793, 10.1128/JVI.00045-14
Rothwell, 2009, Cholesterol biosynthesis modulation regulates dengue viral replication, Virology, 389, 8, 10.1016/j.virol.2009.03.025
Pena, 2012, Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway, PLoS One, 7, 10.1371/journal.pone.0038202
Martin-Acebes, 2016, Host sphingomyelin increases West Nile virus infection in vivo, J. Lipid Res., 57, 422, 10.1194/jlr.M064212
Fraser, 2014, A nuclear transport inhibitor that modulates the unfolded protein response and provides in vivo protection against lethal dengue virus infection, J. Infect. Dis., 210, 1780, 10.1093/infdis/jiu319
Blazquez, 2014, Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy, Front. Microbiol., 5, 266, 10.3389/fmicb.2014.00266
Mizushima, 2008, Autophagy fights disease through cellular self-digestion, Nature, 451, 1069, 10.1038/nature06639
Singh, 2009, Autophagy regulates lipid metabolism, Nature, 458, 1131, 10.1038/nature07976
Kaur, 2015, Autophagy at the crossroads of catabolism and anabolism, Nat. Rev. Mol. Cell Biol., 16, 461, 10.1038/nrm4024
Heaton, 2010, Dengue virus-induced autophagy regulates lipid metabolism, Cell Host Microbe, 8, 422, 10.1016/j.chom.2010.10.006
Mateo, 2013, Inhibition of cellular autophagy deranges dengue virion maturation, J. Virol., 87, 1312, 10.1128/JVI.02177-12
Kimura, 2016, Roles of specific lipid species in the cell and their molecular mechanism, Prog. Lipid Res., 62, 75, 10.1016/j.plipres.2016.02.001
Diwaker, 2015, Protein disulfide isomerase mediates dengue virus entry in association with lipid rafts, Viral Immunol., 28, 153, 10.1089/vim.2014.0095
Reyes-Del Valle, 2005, Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells, J. Virol., 79, 4557, 10.1128/JVI.79.8.4557-4567.2005
Medigeshi, 2008, West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of alphavbeta3 integrin, J. Virol., 82, 5212, 10.1128/JVI.00008-08
Zhu, 2012, Association of heat-shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells, J. Gen. Virol., 93, 61, 10.1099/vir.0.034637-0
Das, 2010, Critical role of lipid rafts in virus entry and activation of phosphoinositide 3′ kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells, J. Neurochem., 115, 537, 10.1111/j.1471-4159.2010.06951.x
Puerta-Guardo, 2010, Antibody-dependent enhancement of dengue virus infection in U937 cells requires cholesterol-rich membrane microdomains, J. Gen. Virol., 91, 394, 10.1099/vir.0.015420-0
Lee, 2005, Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection, J. Virol., 79, 8388, 10.1128/JVI.79.13.8388-8399.2005
Meertens, 2012, The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry, Cell Host Microbe, 12, 544, 10.1016/j.chom.2012.08.009
Jemielity, 2013, TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine, PLoS Pathog., 9, 10.1371/journal.ppat.1003232
Hamel, 2015, Biology of Zika virus infection in human skin cells, J. Virol., 89, 8880, 10.1128/JVI.00354-15
Richard, 2015, Virion-associated phosphatidylethanolamine promotes TIM1-mediated infection by Ebola, dengue, and West Nile viruses, Proc. Natl. Acad. Sci. U. S. A., 112, 14682, 10.1073/pnas.1508095112
Carnec, 2015, The phosphatidylserine and phosphatidylethanolamine receptor CD300a binds dengue virus and enhances infection, J. Virol., 90, 92, 10.1128/JVI.01849-15
Bhattacharyya, 2013, Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors, Cell Host Microbe, 14, 136, 10.1016/j.chom.2013.07.005
Poon, 2014, Apoptotic cell clearance: basic biology and therapeutic potential, Nat. Rev. Immunol., 14, 166, 10.1038/nri3607
Fibriansah, 2013, Structural changes in dengue virus when exposed to a temperature of 37 degrees C, J. Virol., 87, 7585, 10.1128/JVI.00757-13
Zhang, 2013, Dengue structure differs at the temperatures of its human and mosquito hosts, Proc. Natl. Acad. Sci. U. S. A., 110, 6795, 10.1073/pnas.1304300110
Lanteri, 2014, Increased frequency of Tim-3 expressing T cells is associated with symptomatic West Nile virus infection, PLoS One, 9, 10.1371/journal.pone.0092134
Miner, 2015, The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity, Nat. Med., 21, 1464, 10.1038/nm.3974
Vazquez-Calvo, 2012, Acid-dependent viral entry, Virus Res., 10.1016/j.virusres.2012.05.024
Modis, 2013, Class II fusion proteins, Adv. Exp. Med. Biol., 790, 150, 10.1007/978-1-4614-7651-1_8
Stiasny, 2011, Molecular mechanisms of flavivirus membrane fusion, Amino Acids, 41, 1159, 10.1007/s00726-009-0370-4
Teissier, 2007, Lipids as modulators of membrane fusion mediated by viral fusion proteins, Eur. Biophys. J., 36, 887, 10.1007/s00249-007-0201-z
Zaitseva, 2010, Dengue virus ensures its fusion in late endosomes using compartment-specific lipids, PLoS Pathog., 6, 10.1371/journal.ppat.1001131
Nour, 2013, Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses, PLoS Pathog., 9, 10.1371/journal.ppat.1003585
Gollins, 1986, pH-dependent fusion between the flavivirus West Nile and liposomal model membranes, J. Gen. Virol., 67, 157, 10.1099/0022-1317-67-1-157
Moesker, 2010, Characterization of the functional requirements of West Nile virus membrane fusion, J. Gen. Virol., 91, 389, 10.1099/vir.0.015255-0
Stiasny, 2003, Involvement of lipids in different steps of the flavivirus fusion mechanism, J. Virol., 77, 7856, 10.1128/JVI.77.14.7856-7862.2003
Poh, 2012, U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication, Antivir. Res., 93, 191, 10.1016/j.antiviral.2011.11.014
Lee, 2008, Cholesterol effectively blocks entry of flavivirus, J. Virol., 82, 6470, 10.1128/JVI.00117-08
Medigeshi, 2008, West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of alphavbeta3 integrin, J. Virol., 82, 5212, 10.1128/JVI.00008-08
Umashankar, 2008, Differential cholesterol binding by class II fusion proteins determines membrane fusion properties, J. Virol., 82, 9245, 10.1128/JVI.00975-08
Stiasny, 2004, Effect of membrane curvature-modifying lipids on membrane fusion by tick-borne encephalitis virus, J. Virol., 78, 8536, 10.1128/JVI.78.16.8536-8542.2004
Tani, 2010, Involvement of ceramide in the propagation of Japanese encephalitis virus, J. Virol., 84, 2798, 10.1128/JVI.02499-09
Welsch, 2009, Composition and three-dimensional architecture of the dengue virus replication and assembly sites, Cell Host Microbe, 5, 365, 10.1016/j.chom.2009.03.007
Gillespie, 2010, The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex, J. Virol., 84, 10438, 10.1128/JVI.00986-10
Miorin, 2013, Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA, J. Virol., 87, 6469, 10.1128/JVI.03456-12
Junjhon, 2014, Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells, J. Virol., 88, 4687, 10.1128/JVI.00118-14
Akey, 2014, Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system, Science, 343, 881, 10.1126/science.1247749
Chang, 1999, Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus, J. Virol., 73, 6257, 10.1128/JVI.73.8.6257-6264.1999
Leon-Juarez, 2016, Recombinant dengue virus protein NS2B alters membrane permeability in different membrane models, Virol. J., 13, 1, 10.1186/s12985-015-0456-4
Miller, 2007, The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner, J. Biol. Chem., 282, 8873, 10.1074/jbc.M609919200
Roosendaal, 2006, Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein, J. Virol., 80, 4623, 10.1128/JVI.80.9.4623-4632.2006
Colgan, 2011, Endoplasmic reticulum stress and lipid dysregulation, Expert Rev. Mol. Med., 13, 10.1017/S1462399410001742
Hsu, 2010, Viral reorganization of the secretory pathway generates distinct organelles for RNA replication, Cell, 141, 799, 10.1016/j.cell.2010.03.050
Reiss, 2011, Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment, Cell Host Microbe, 9, 32, 10.1016/j.chom.2010.12.002
Vaillancourt, 2009, Identification of a lipid kinase as a host factor involved in hepatitis C virus RNA replication, Virology, 387, 5, 10.1016/j.virol.2009.02.039
Villareal, 2015, Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses, Antivir. Res., 124, 110, 10.1016/j.antiviral.2015.10.013
Hurley, 2010, Membrane budding, Cell, 143, 875, 10.1016/j.cell.2010.11.030
Trajkovic, 2008, Ceramide triggers budding of exosome vesicles into multivesicular endosomes, Science, 319, 1244, 10.1126/science.1153124
Martinez-Seara, 2008, Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the double-bond position, Biophys. J., 95, 3295, 10.1529/biophysj.108.138123
Roux, 2005, Role of curvature and phase transition in lipid sorting and fission of membrane tubules, EMBO J., 24, 1537, 10.1038/sj.emboj.7600631
Sot, 2006, Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers, Biophys. J., 90, 903, 10.1529/biophysj.105.067710
Goni, 2005, Biophysics (and sociology) of ceramides, Biochem. Soc. Symp., 177-88
Browman, 2006, Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER, J. Cell Sci., 119, 3149, 10.1242/jcs.03060
Boslem, 2013, Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic beta-cells, J. Biol. Chem., 288, 26569, 10.1074/jbc.M113.489310
Waugh, 2011, CDP-diacylglycerol phospholipid synthesis in detergent-soluble, non-raft, membrane microdomains of the endoplasmic reticulum, J. Lipid Res., 52, 2148, 10.1194/jlr.M017814
Sano, 2009, GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis, Mol. Cell, 36, 500, 10.1016/j.molcel.2009.10.021
Kim, 2011, A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes, Dev. Cell, 21, 813, 10.1016/j.devcel.2011.09.005
Noisakran, 2008, Association of dengue virus NS1 protein with lipid rafts, J. Gen. Virol., 89, 2492, 10.1099/vir.0.83620-0
Garcia Cordero, 2014, Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells, PLoS One, 9, 10.1371/journal.pone.0090704
Chen, 2013, Anti-dengue virus nonstructural protein 1 antibodies cause NO-mediated endothelial cell apoptosis via ceramide-regulated glycogen synthase kinase-3beta and NF-kappaB activation, J. Immunol., 191, 1744, 10.4049/jimmunol.1201976
Silva, 2011, The dengue virus nonstructural protein 1 (NS1) increases NF-kappaB transcriptional activity in HepG2 cells, Arch. Virol., 156, 1275, 10.1007/s00705-011-0969-0
Jan, 2000, Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: arachidonic acid, superoxide anion, and NF-kappaB are sequentially involved, J. Virol., 74, 8680, 10.1128/JVI.74.18.8680-8691.2000
Carr, 2013, Reduced sphingosine kinase 1 activity in dengue virus type-2 infected cells can be mediated by the 3′ untranslated region of dengue virus type-2 RNA, J. Gen. Virol., 94, 2437, 10.1099/vir.0.055616-0
Jiang, 1841, Autophagy paradox and ceramide, Biochim. Biophys. Acta, 2014, 783
Young, 2013, Sphingolipids: regulators of crosstalk between apoptosis and autophagy, J. Lipid Res., 54, 5, 10.1194/jlr.R031278
Reddy, 2016, The role of the membrane in the structure and biophysical robustness of the dengue virion envelope, Structure, 24, 375, 10.1016/j.str.2015.12.011
Carro, 2013, Requirement of cholesterol in the viral envelope for dengue virus infection, Virus Res., 174, 78, 10.1016/j.virusres.2013.03.005
Zhang, 2013, Membrane curvature in flaviviruses, J. Struct. Biol., 183, 86, 10.1016/j.jsb.2013.04.005
Merz, 2011, Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome, J. Biol. Chem., 286, 3018, 10.1074/jbc.M110.175018
Callens, 2016, Morphology and molecular composition of purified bovine viral diarrhea virus envelope, PLoS Pathog., 12, 10.1371/journal.ppat.1005476
Martinez-Gutierrez, 2011, Statins reduce dengue virus production via decreased virion assembly, Intervirology, 54, 202, 10.1159/000321892
Lorizate, 2009, Probing HIV-1 membrane liquid order by Laurdan staining reveals producer cell-dependent differences, J. Biol. Chem., 284, 22238, 10.1074/jbc.M109.029256
Holopainen, 2000, Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes, Biophys. J., 78, 830, 10.1016/S0006-3495(00)76640-9
Zha, 1998, Sphingomyelinase treatment induces ATP-independent endocytosis, J. Cell Biol., 140, 39, 10.1083/jcb.140.1.39
Walther, 2012, Lipid droplets and cellular lipid metabolism, Annu. Rev. Biochem., 81, 687, 10.1146/annurev-biochem-061009-102430
Wang, 2015, Lipid droplets, lipophagy, and beyond, Biochim. Biophys. Acta
Samsa, 2009, Dengue virus capsid protein usurps lipid droplets for viral particle formation, PLoS Pathog., 5, 10.1371/journal.ppat.1000632
Soto-Acosta, 2014, Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus, Antivir. Res., 109, 132, 10.1016/j.antiviral.2014.07.002
Barletta, 2016, Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and dengue virus, Sci. Rep., 6, 19928, 10.1038/srep19928
Helbig, 2013, Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin, PLoS Negl. Trop. Dis., 7, 10.1371/journal.pntd.0002178
Martins, 2012, The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif, Biochem. J., 444, 405, 10.1042/BJ20112219
Teoh, 2014, Maintenance of dimer conformation by the dengue virus core protein alpha4-alpha4′ helix pair is critical for nucleocapsid formation and virus production, J. Virol., 88, 7998, 10.1128/JVI.00940-14
Carvalho, 2012, Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins, J. Virol., 86, 2096, 10.1128/JVI.06796-11
Faustino, 2014, Dengue virus capsid protein interacts specifically with very low-density lipoproteins, Nanomedicine, 10, 247, 10.1016/j.nano.2013.06.004
Iglesias, 2015, Dengue virus uses a non-canonical function of the host GBF1-Arf-COPI system for capsid protein accumulation on lipid droplets, Traffic, 16, 962, 10.1111/tra.12305
Suthar, 2013, West Nile virus infection and immunity, Nat. Rev. Microbiol., 11, 115, 10.1038/nrmicro2950
Devignot, 2010, Genome-wide expression profiling deciphers host responses altered during dengue shock syndrome and reveals the role of innate immunity in severe dengue, PLoS One, 5, 10.1371/journal.pone.0011671
Ghoshal, 2007, Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis, Glia, 55, 483, 10.1002/glia.20474
Verma, 2011, Cyclooxygenase-2 inhibitor blocks the production of West Nile virus-induced neuroinflammatory markers in astrocytes, J. Gen. Virol., 92, 507, 10.1099/vir.0.026716-0
Calvert, 2015, Dengue virus infection of primary endothelial cells induces innate immune responses, changes in endothelial cells function and is restricted by interferon-stimulated responses, J. Interf. Cytokine Res., 35, 654, 10.1089/jir.2014.0195
Clarke, 2016, Reduction in sphingosine kinase 1 influences the susceptibility to dengue virus infection by altering antiviral responses, J. Gen. Virol., 97, 95, 10.1099/jgv.0.000334
Chen, 2011, Src signaling involvement in Japanese encephalitis virus-induced cytokine production in microglia, Neurochem. Int., 58, 924, 10.1016/j.neuint.2011.02.022
Hoenen, 2007, West Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein, J. Gen. Virol., 88, 3013, 10.1099/vir.0.83125-0
Hoenen, 2014, The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein, Virology, 448, 104, 10.1016/j.virol.2013.10.005
Munger, 2008, Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy, Nat. Biotechnol., 26, 1179, 10.1038/nbt.1500
Garavito, 2003, The structure of mammalian cyclooxygenases, Annu. Rev. Biophys. Biomol. Struct., 32, 183, 10.1146/annurev.biophys.32.110601.141906
Opie, 2015, Present status of statin therapy, Trends Cardiovasc. Med., 25, 216, 10.1016/j.tcm.2014.10.002
Menendez, 2007, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis, Nat. Rev. Cancer, 7, 763, 10.1038/nrc2222
Martinez-Gutierrez, 2014, Lovastatin delays infection and increases survival rates in AG129 mice infected with dengue virus serotype 2, PLoS One, 9, 10.1371/journal.pone.0087412
Whitehorn, 2016, Lovastatin for the treatment of adult patients with dengue: a randomized, double-blind, placebo-controlled trial, Clin. Infect. Dis., 62, 468
Faustino, 2015, Understanding dengue virus capsid protein disordered N-terminus and pep14-23-based inhibition, ACS Chem. Biol., 10, 517, 10.1021/cb500640t
Jeffries, 2015, The potential use of Wolbachia-based mosquito biocontrol strategies for Japanese encephalitis, PLoS Negl. Trop. Dis., 9, 10.1371/journal.pntd.0003576
Jeffries, 2016, Biocontrol strategies for arboviral diseases and the potential influence of resident strains in mosquitoes, Curr. Trop. Med. Rep., 3, 20, 10.1007/s40475-016-0066-2
Molloy, 2016, Wolbachia modulates lipid metabolism in Aedes albopictus mosquito cells, Appl. Environ. Microbiol., 10.1128/AEM.00275-16
Krishnan, 2014, Targeting host factors to treat West Nile and dengue viral infections, Virus, 6, 683, 10.3390/v6020683
Acosta, 2014, Revisiting dengue virus-host cell interaction: new insights into molecular and cellular virology, Adv. Virus Res., 88, 1, 10.1016/B978-0-12-800098-4.00001-5
Roby, 2015, Post-translational regulation and modifications of flavivirus structural proteins, J. Gen. Virol., 96, 1551, 10.1099/vir.0.000097
Fu, 2015, Sterol carrier protein 2, a critical host factor for dengue virus infection, alters the cholesterol distribution in mosquito Aag2 cells, J. Med. Entomol., 52, 1124, 10.1093/jme/tjv101
Uchida, 2016, Suppressive effects of the site 1 protease (S1P) inhibitor, PF-429242, on dengue virus propagation, Virus, 8
Vazquez-Calvo, 2011, Inhibition of enveloped virus infection of cultured cells by valproic acid, J. Virol., 85, 1267, 10.1128/JVI.01717-10
Faustino, 2015, Understanding dengue virus capsid protein interaction with key biological targets, Sci. Rep., 5, 10592, 10.1038/srep10592