Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging

Journal of Lipid Research - Tập 62 - Trang 100020 - 2021
Astrid M. Moerman1, Mirjam Visscher1, Nuria Slijkhuis1, Kim Van Gaalen1, Bram Heijs2, Theo Klein3, Peter C. Burgers4, Yolanda B. De Rijke3, Heleen M.M. Van Beusekom5, Theo M. Luider4, Hence J.M. Verhagen6, Antonius F.W. Van der Steen1,7, Frank J.H. Gijsen1, Kim Van der Heiden1, Gijs Van Soest1
1Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
2Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
3Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
4Department of Neurology, Laboratory of Neuro-Oncology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
5Department of Experimental Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
6Department of Vascular and Endovascular Surgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
7Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Tài liệu tham khảo

2017, Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet, 390, 1151, 10.1016/S0140-6736(17)32152-9 Lusis, 2000, Atherosclerosis, Nature, 407, 233, 10.1038/35025203 Duewell, 2010, NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals, Nature, 464, 1357, 10.1038/nature08938 Rajamäki, 2010, Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation, PLoS One, 5, e11765, 10.1371/journal.pone.0011765 Rader, 2005, Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell?, Cell Metab, 1, 223, 10.1016/j.cmet.2005.03.005 Silvestre-Roig, 2014, Atherosclerotic plaque destabilization: Mechanisms, models, and therapeutic strategies, Circ. Res., 114, 214, 10.1161/CIRCRESAHA.114.302355 Rapp, 1983, Lipids of human atherosclerotic plaques and xanthomas: clues to the mechanism of plaque progression, J. Lipid Res., 24, 1329, 10.1016/S0022-2275(20)37883-4 Small, 1988, George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry, Arterioscler, 8, 103, 10.1161/01.ATV.8.2.103 Felton, 1997, Relation of plaque lipid composition and morphology to the stability of human aortic plaques, Arterioscler. Thromb. Vasc. Biol., 17, 1337, 10.1161/01.ATV.17.7.1337 Norris, 2013, Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research, Chem. Rev., 113, 2309, 10.1021/cr3004295 Eberlin, 2011, Desorption electrospray ionization then MALDI mass spectrometry imaging of lipid and protein distributions in single tissue sections, Anal. Chem., 83, 8366, 10.1021/ac202016x Hutchins, 2011, Electrospray MS/MS reveals extensive and nonspecific oxidation of cholesterol esters in human peripheral vascular lesions, J. Lipid Res., 52, 2070, 10.1194/jlr.M019174 Lehti, 2015, Spatial distributions of lipids in atherosclerosis of human coronary arteries studied by time-of-flight secondary ion mass spectrometry, Am. J. Pathol., 185, 1216, 10.1016/j.ajpath.2015.01.026 Malmberg, 2007, Localization of lipids in the aortic wall with imaging TOF-SIMS, Biochim. Biophys. Acta, 1771, 185, 10.1016/j.bbalip.2006.12.003 Manicke, 2009, Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry, Anal. Chem., 81, 8702, 10.1021/ac901739s Martin-Lorenzo, 2016, Molecular histology of arteries: mass spectrometry imaging as a novel ex vivo tool to investigate atherosclerosis, Expert Rev. Proteomics., 13, 69, 10.1586/14789450.2016.1116944 Mezger, 2019, Trends in mass spectrometry imaging for cardiovascular diseases, Anal. Bioanal. Chem., 411, 3709, 10.1007/s00216-019-01780-8 Patterson, 2016, Three-dimensional imaging MS of lipids in atherosclerotic plaques: open-source methods for reconstruction and analysis, Proteomics, 16, 1642, 10.1002/pmic.201500490 Visscher, 2019, Data processing pipeline for lipid profiling of carotid atherosclerotic plaque with mass spectrometry imaging, J. Am. Soc. Mass Spectrom., 30, 1790, 10.1007/s13361-019-02254-y Stary, 1995, A Definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis, Circulation, 92, 1355, 10.1161/01.CIR.92.5.1355 Virmani, 2006, Histopathology of carotid atherosclerotic disease, Neurosurgery, 59, 10.1227/01.NEU.0000239895.00373.E4 Virmani, 2000, Lessons from sudden coronary death, Arterioscler. Thromb. Vasc. Biol., 20, 1262, 10.1161/01.ATV.20.5.1262 Wijeyaratne, 2002, A modification to the standard technique for carotid endarterectomy allowing removal of intact endarterectomy specimens: implications for research and quality control of preoperative imaging, Eur. J. Vasc. Endovasc. Surg., 23, 370, 10.1053/ejvs.2001.1562 Dekker, 2009, A mass spectrometry based imaging method developed for the intracellular detection of HIV protease inhibitors, Rapid Commun. Mass Spectrom, 23, 1183, 10.1002/rcm.3981 Strohalm, 2008, mMass data miner: an open source alternative for mass spectrometric data analysis, Rapid Commun. Mass Spectrom., 22, 905, 10.1002/rcm.3444 Veselkov, 2014, Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer, Proc. Natl. Acad. Sci., 111, 1216, 10.1073/pnas.1310524111 Lee, 1999, Learning the parts of objects by non-negative matrix factorization, Nature, 401, 788, 10.1038/44565 Li, 2013, The non-negative matrix factorization toolbox for biological data mining, Source Code Biol. Med., 8, 10, 10.1186/1751-0473-8-10 Verbeeck, 2020, Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry, Mass Spectrom. Rev., 39, 245, 10.1002/mas.21602 Kim, 2007, Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis, Bioinformatics, 23, 1495, 10.1093/bioinformatics/btm134 Bylesjö, 2006, OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, J. Chemom., 20, 341, 10.1002/cem.1006 Eriksson, 2008, CV-ANOVA for significance testing of PLS and OPLS® models, J. Chemom., 22, 594, 10.1002/cem.1187 Galindo-Prieto, 2014, Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS), J. Chemom., 28, 623, 10.1002/cem.2627 Palmer, 2017, FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry, Nat. Methods., 14, 57, 10.1038/nmeth.4072 Steinberg, 2009, The LDL modification hypothesis of atherogenesis: an update, J. Lipid Res., 50, S376, 10.1194/jlr.R800087-JLR200 Steinbrecher, 1990, Role of oxidatively modified LDL in atherosclerosis, Free Radic. Biol. Med., 9, 155, 10.1016/0891-5849(90)90119-4 Suarna, 1995, Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of α-tocopherol and ascorbate, Arterioscler. Thromb. Vasc. Biol., 15, 1616, 10.1161/01.ATV.15.10.1616 Brown, 1997, 7-Hydroperoxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque, J. Lipid Res., 38, 1730, 10.1016/S0022-2275(20)37148-0 Upston, 2002, Disease stage-dependent accumulation of lipid and protein oxidation products in human atherosclerosis, Am. J. Pathol., 160, 701, 10.1016/S0002-9440(10)64890-0 Stegemann, 2014, Lipidomics profiling and risk of cardiovascular disease in the prospective population-based bruneck study, Circulation, 129, 1821, 10.1161/CIRCULATIONAHA.113.002500 Smith, 1960, Intimal and medial lipids in human aortas, Lancet, 275, 799, 10.1016/S0140-6736(60)90680-2 Kruizinga, 2014, Photoacoustic imaging of carotid artery atherosclerosis, J. Biomed. Opt., 19, 110504, 10.1117/1.JBO.19.11.110504 Jansen, 2014, Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis, J. Biomed. Opt., 19, 10.1117/1.JBO.19.2.026006 Duivenvoorden, 2013, Detection of Liquid Phase Cholesteryl Ester in Carotid Atherosclerosis by 1H-MR Spectroscopy in Humans, JACC Cardiovasc. Imaging, 6, 1277, 10.1016/j.jcmg.2013.03.010 Cheng, 2015, Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: Results of the ATHEROREMO-IVUS study, Atherosclerosis, 243, 560, 10.1016/j.atherosclerosis.2015.10.022 Hilvo, 2019, Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients, Eur. Heart J., 41, 371, 10.1093/eurheartj/ehz387 Hasegawa, 2011, Detection of oxysterols in oxidatively modified low density lipoprotein by MALDI-TOF MS, Eur. J. Lipid Sci. Technol., 113, 423, 10.1002/ejlt.201000366 Crisby, 1997, Localization of sterol 27-hydroxylase immuno-reactivity in human atherosclerotic plaques, Biochim. Biophys. Acta, 1344, 278, 10.1016/S0005-2760(96)00152-X Martinet, 2004, 7-Ketocholesterol induces protein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol., 24, 2296, 10.1161/01.ATV.0000146266.65820.a1 Anderson, 2020, 7-Ketocholesterol in disease and aging, Redox Biol, 29, 101380, 10.1016/j.redox.2019.101380 Shi, 2019, Mass spectrometric imaging reveals temporal and spatial dynamics of bioactive lipids in arteries undergoing restenosis, J. Proteome Res., 18, 1669, 10.1021/acs.jproteome.8b00941 Rask-Madsen, 2005, Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance, Arterioscler. Thromb. Vasc. Biol., 25, 487, 10.1161/01.ATV.0000155325.41507.e0 D'Souza, 2009, Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic heart, Mol. Cell. Biochem., 331, 89, 10.1007/s11010-009-0148-8 Konopatskaya, 2011, Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2, Blood, 118, 416, 10.1182/blood-2010-10-312199 Harper, 2010, Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation, J. Thromb. Haemost., 8, 454, 10.1111/j.1538-7836.2009.03722.x van Meer, 2008, Membrane lipids: where they are and how they behave, Nat. Rev. Mol. Cell Biol., 9, 112, 10.1038/nrm2330 Martin-Lorenzo, 2015, Lipid and protein maps defining arterial layers in atherosclerotic aorta, Data Br, 4, 328, 10.1016/j.dib.2015.06.005 Stegemann, 2011, Comparative Lipidomics Profiling of Human Atherosclerotic Plaques, Circ. Cardiovasc. Genet., 4, 232, 10.1161/CIRCGENETICS.110.959098 Edsfeldt, 2016, Sphingolipids contribute to human atherosclerotic plaque inflammation, Arterioscler. Thromb. Vasc. Biol., 36, 1132, 10.1161/ATVBAHA.116.305675 Castro-Perez, 2014, In vivo isotopically labeled atherosclerotic aorta plaques in ApoE KO mice and molecular profiling by matrix-assisted laser desorption/ionization mass spectrometric imaging, Rapid Commun. Mass Spectrom., 28, 2471, 10.1002/rcm.7039 Zaima, 2011, Imaging mass spectrometry-based histopathologic examination of atherosclerotic lesions, Atherosclerosis, 217, 427, 10.1016/j.atherosclerosis.2011.03.044 Lee, 2013, The regional ratio of cholesteryl palmitate to cholesteryl oleate measured by ToF-SIMS as a key parameter of atherosclerosis, Atherosclerosis, 226, 378, 10.1016/j.atherosclerosis.2012.11.003 Ravandi, 2004, Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development, Lipids, 39, 97, 10.1007/s11745-004-1207-5