Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis

Protein & Cell - Tập 3 Số 3 - Trang 173-181 - 2012
Yuan Yuan1, Peng Li2, Jing Ye1
1Department of Pathology, Xijing Hospital, Fourth Military Medical University, 710032, Xi’an, China
2Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adorni, M.P., Zimetti, F., Billheimer, J.T., Wang, N., Rader, D.J., Phillips, M.C., and Rothblat, G.H. (2007). The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48, 2453–2462.

An, G., Wang, H., Tang, R., Yago, T., McDaniel, J.M., McGee, S., Huo, Y., and Xia, L. (2008). P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation 117, 3227–3237.

Ashraf, M.Z., and Gupta, N. (2011). Scavenger receptors: Implications in atherothrombotic disorders. Int J Biochem Cell Biol 43, 697–700.

Borradaile, N.M., Han, X., Harp, J.D., Gale, S.E., Ory, D.S., and Schaffer, J.E. (2006). Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47, 2726–2737.

Brown, M.S., and Goldstein, J.L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340.

Brown, M.S., and Goldstein, J.L. (1999). A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 96, 11041–11048.

Brunham, L.R., Singaraja, R.R., Duong, M., Timmins, J.M., Fievet, C., Bissada, N., Kang, M.H., Samra, A., Fruchart, J.C., McManus, B., et al. (2009). Tissue-specific roles of ABCA1 influence susceptibility to atherosclerosis. Arterioscler Thromb Vasc Biol 29, 548–554.

Buechler, C., Ritter, M., Duong, C.Q., Orso, E., Kapinsky, M., and Schmitz, G. (2001). Adipophilin is a sensitive marker for lipid loading in human blood monocytes. Biochim Biophys Acta 1532, 97–104.

Buers, I., Hofnagel, O., Ruebel, A., Severs, N.J., and Robenek, H. (2011). Lipid droplet associated proteins: an emerging role in atherogenesis. Histol Histopathol 26, 631–642.

Buers, I., Robenek, H., Lorkowski, S., Nitschke, Y., Severs, N.J., and Hofnagel, O. (2009). TIP47, a lipid cargo protein involved in macrophage triglyceride metabolism. Arterioscler Thromb Vasc Biol 29, 767–773.

Bultel, S., Helin, L., Clavey, V., Chinetti-Gbaguidi, G., Rigamonti, E., Colin, M., Fruchart, J.C., Staels, B., and Lestavel, S. (2008). Liver X receptor activation induces the uptake of cholesteryl esters from high density lipoproteins in primary human macrophages. Arterioscler Thromb Vasc Biol 28, 2288–2295.

Burgess, B., Naus, K., Chan, J., Hirsch-Reinshagen, V., Tansley, G., Matzke, L., Chan, B., Wilkinson, A., Fan, J., Donkin, J., et al. (2008). Overexpression of human ABCG1 does not affect atherosclerosis in fat-fed ApoE-deficient mice. Arterioscler Thromb Vasc Biol 28, 1731–1737.

Chawla, A., Boisvert, W.A., Lee, C.H., Laffitte, B.A., Barak, Y., Joseph, S.B., Liao, D., Nagy, L., Edwards, P.A., Curtiss, L.K., et al. (2001). A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7, 161–171.

Chen, F.L., Yang, Z.H., Wang, X.C., Liu, Y., Yang, Y.H., Li, L.X., Liang, W.C., Zhou, W.B., and Hu, R.M. (2010). Adipophilin affects the expression of TNF-alpha, MCP-1, and IL-6 in THP-1 macrophages. Mol Cell Biochem 337, 193–199.

Chinetti, G., Lestavel, S., Bocher, V., Remaley, A.T., Neve, B., Torra, I.P., Teissier, E., Minnich, A., Jaye, M., Duverger, N., et al. (2001). PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7, 53–58.

Chinetti-Gbaguidi, G., Rigamonti, E., Helin, L., Mutka, A.L., Lepore, M., Fruchart, J.C., Clavey, V., Ikonen, E., Lestavel, S., and Staels, B. (2005). Peroxisome proliferator-activated receptor alpha controls cellular cholesterol trafficking in macrophages. J Lipid Res 46, 2717–2725.

Combadière, C., Potteaux, S., Rodero, M., Simon, T., Pezard, A., Esposito, B., Merval, R., Proudfoot, A., Tedgui, A., and Mallat, Z. (2008). CCombined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 1117, 1649–1657.

Duewell, P., Kono, H., Rayner, K.J., Sirois, C.M., Vladimer, G., Bauernfeind, F.G., Abela, G.S., Franchi, L., Nuñez, G., Schnurr, M., et al. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361.

Faber, B.C., Cleutjens, K.B., Niessen, R.L., Aarts, P.L., Boon, W., Greenberg, A.S., Kitslaar, P.J., Tordoir, J.H., and Daemen, M.J. (2001). Identification of genes potentially involved in rupture of human atherosclerotic plaques. Circ Res 89, 547–554.

Fazio, S., Major, A.S., Swift, L.L., Gleaves, L.A., Accad, M., Linton, M.F., and Farese, R.V. Jr. (2001). Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest 107, 163–171.

Feingold, K.R., Kazemi, M.R., Magra, A.L., McDonald, C.M., Chui, L.G., Shigenaga, J.K., Patzek, S.M., Chan, Z.W., Londos, C., and Grunfeld, C. (2010). ADRP/ADFP and Mal1 expression are increased in macrophages treated with TLR agonists. Atherosclerosis 209, 81–88.

Ghosh, S., St Clair, R.W., and Rudel, L.L. (2003). Mobilization of cytoplasmic CE droplets by overexpression of human macrophage cholesteryl ester hydrolase. J Lipid Res 44, 1833–1840.

Ghosh, S., Zhao, B., Bie, J., and Song, J. (2010). Macrophage cholesteryl ester mobilization and atherosclerosis. Vascul Pharmacol 52, 1–10.

Glass, C.K., and Witztum, J.L. (2001). Atherosclerosis. the road ahead. Cell 104, 503–516.

Goldstein, J.L., DeBose-Boyd, R.A., and Brown, M.S. (2006). Protein sensors for membrane sterols. Cell 124, 35–46.

Gong, J., Sun, Z., and Li, P. (2009). CIDE proteins and metabolic disorders. Curr Opin Lipidol 20, 121–126.

Gordon, S., and Martinez, F.O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604.

Gu, J.Q., Wang, D.F., Yan, X.G., Zhong, W.L., Zhang, J., Fan, B., and Ikuyama, S. (2010). A Toll-like receptor 9-mediated pathway stimulates perilipin 3 (TIP47) expression and induces lipid accumulation in macrophages. Am J Physiol Endocrinol Metab 299, E593–E600.

Hofnagel, O., Buers, I., Schnoor, M., Lorkowski, S., and Robenek, H. (2007). Expression of perilipin isoforms in cell types involved in atherogenesis. Atherosclerosis 190, 14–15, author reply 16–17.

Im, S.S., Yousef, L., Blaschitz, C., Liu, J.Z., Edwards, R.A., Young, S.G., Raffatellu, M., and Osborne, T.F. (2011). Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab 13, 540–549.

Kadl, A., Meher, A.K., Sharma, P.R., Lee, M.Y., Doran, A.C., Johnstone, S.R., Elliott, M.R., Gruber, F., Han, J., Chen, W., et al. (2010). Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107, 737–746.

Kunjathoor, V.V., Febbraio, M., Podrez, E.A., Moore, K.J., Andersson, L., Koehn, S., Rhee, J.S., Silverstein, R., Hoff, H.F., and Freeman, M.W. (2002). Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277, 49982–49988.

Langlois, D., Forcheron, F., Li, J.Y., del Carmine, P., Neggazi, S., and Beylot, M. (2011). Increased atherosclerosis in mice deficient in perilipin1. Lipids Health Dis 10, 169.

Larigauderie, G., Cuaz-Pérolin, C., Younes, A.B., Furman, C., Lasselin, C., Copin, C., Jaye, M., Fruchart, J.C., and Rouis, M. (2006). Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of beta-oxidation. FEBS J 273, 3498–3510.

Larigauderie, G., Furman, C., Jaye, M., Lasselin, C., Copin, C., Fruchart, J.C., Castro, G., and Rouis, M. (2004). Adipophilin enhances lipid accumulation and prevents lipid efflux from THP-1 macrophages: potential role in atherogenesis. Arterioscler Thromb Vasc Biol 24, 504–510.

Lee, C.H., Chawla, A., Urbiztondo, N., Liao, D., Boisvert, W.A., Evans, R.M., and Curtiss, L.K. (2003). Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 302, 453–457.

Lee, K.J., Kim, H.A., Kim, P.H., Lee, H.S., Ma, K.R., Park, J.H., Kim, D.J., and Hahn, J.H. (2004). Ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD36-mediated activation of PPAR-g. Exp Mol Med 36, 534–544.

Li, A.C., Binder, C.J., Gutierrez, A., Brown, K.K., Plotkin, C.R., Pattison, J.W., Valledor, A.F., Davis, R.A., Willson, T.M., Witztum, J.L., et al. (2004). Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest 114, 1564–1576.

Li, H., Song, Y., Li, F., Zhang, L., Gu, Y., Zhang, L., Jiang, L., Dong, W., Ye, J., and Li, Q. (2010). Identification of lipid droplet-associated proteins in the formation of macrophage-derived foam cells using microarrays. Int J Mol Med 26, 231–239.

Li, J.Z., and Li, P. (2007). Cide proteins and the development of obesity. Novartis Found Symp 286, 155–159; discussion 159–163, 196–203.

Li, J.Z., Ye, J., Xue, B., Qi, J., Zhang, J., Zhou, Z., Li, Q., Wen, Z., and Li, P. (2007). Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 56, 2523–2532.

Listenberger, L.L., Ostermeyer-Fay, A.G., Goldberg, E.B., Brown, W.J., and Brown, D.A. (2007). Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res 48, 2751–2761.

Makowski, L., Boord, J.B., Maeda, K., Babaev, V.R., Uysal, K.T., Morgan, M.A., Parker, R.A., Suttles, J., Fazio, S., Hotamisligil, G.S., et al. (2001). Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7, 699–705.

Manning-Tobin, J.J., Moore, K.J., Seimon, T.A., Bell, S.A., Sharuk, M., Alvarez-Leite, J.I., de Winther, M.P., Tabas, I., and Freeman, M.W. (2009). Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 29, 19–26.

Martinez, F.O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177, 7303–7311.

Moon, Y.A., Shah, N.A., Mohapatra, S., Warrington, J.A., and Horton, J.D. (2001). Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 276, 45358–45366.

Moore, K.J., Kunjathoor, V.V., Koehn, S.L., Manning, J.J., Tseng, A.A., Silver, J.M., McKee, M., and Freeman, M.W. (2005). Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest 115, 2192–2201.

Nishino, N., Tamori, Y., Tateya, S., Kawaguchi, T., Shibakusa, T., Mizunoya, W., Inoue, K., Kitazawa, R., Kitazawa, S., Matsuki, Y., et al. (2008). FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118, 2808–2821.

Ouimet, M., Franklin, V., Mak, E., Liao, X., Tabas, I., and Marcel, Y.L. (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13, 655–667.

Paul, A., Chan, L., and Bickel, P.E. (2008a). The PAT family of lipid droplet proteins in heart and vascular cells. Curr Hypertens Rep 10, 461–466.

Paul, A., Chang, B.H., Li, L., Yechoor, V.K., and Chan, L. (2008b). Deficiency of adipose differentiation-related protein impairs foam cell formation and protects against atherosclerosis. Circ Res 102, 1492–1501.

Pello, O.M., Silvestre, C., De Pizzol, M., and Andrés, V. (2011). A glimpse on the phenomenon of macrophage polarization during atherosclerosis. Immunobiology 216, 1172–1176.

Perrey, S., Legendre, C., Matsuura, A., Guffroy, C., Binet, J., Ohbayashi, S., Tanaka, T., Ortuno, J.C., Matsukura, T., Laugel, T., et al. (2001). Preferential pharmacological inhibition of macrophage ACAT increases plaque formation in mouse and rabbit models of atherogenesis. Atherosclerosis 155, 359–370.

Podrez, E.A., Febbraio, M., Sheibani, N., Schmitt, D., Silverstein, R.L., Hajjar, D.P., Cohen, P.A., Frazier, W.A., Hoff, H.F., and Hazen, S.L. (2000). Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 105, 1095–1108.

Posokhova, E.N., Khoshchenko, O.M., Chasovskikh, M.I., Pivovarova, E.N., and Dushkin, M.I. (2008). Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors. Biochemistry (Mosc) 73, 296–304.

Puri, V., Konda, S., Ranjit, S., Aouadi, M., Chawla, A., Chouinard, M., Chakladar, A., and Czech, M.P. (2007). Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem 282, 34213–34218.

Puri, V., Ranjit, S., Konda, S., Nicoloro, S.M., Straubhaar, J., Chawla, A., Chouinard, M., Lin, C., Burkart, A., Corvera, S., et al. (2008). Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A 105, 7833–7838.

Rader, D.J., and Puré, E. (2005). Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab 1, 223–230.

Rios, F.J., Gidlund, M., and Jancar, S. (2011). Pivotal role for platelet-activating factor receptor in CD36 expression and oxLDL uptake by human monocytes/macrophages. Cell Physiol Biochem 27, 363–372.

Robenek, H., Lorkowski, S., Schnoor, M., and Troyer, D. (2005a). Spatial integration of TIP47 and adipophilin in macrophage lipid bodies. J Biol Chem 280, 5789–5794.

Robenek, H., Robenek, M.J., and Troyer, D. (2005b). PAT family proteins pervade lipid droplet cores. J Lipid Res 46, 1331–1338.

Siegel-Axel, D., Daub, K., Seizer, P., Lindemann, S., and Gawaz, M. (2008). Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res 78, 8–17.

Takahashi, K., Takeya, M., and Sakashita, N. (2002). Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc 35, 179–203.

Taketa, K., Matsumura, T., Yano, M., Ishii, N., Senokuchi, T., Motoshima, H., Murata, Y., Kim-Mitsuyama, S., Kawada, T., Itabe, H., et al. (2008). Oxidized low density lipoprotein activates peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma through MAPK-dependent COX-2 expression in macrophages. J Biol Chem 283, 9852–9862.

Tansey, J.T., Sztalryd, C., Gruia-Gray, J., Roush, D.L., Zee, J.V., Gavrilova, O., Reitman, M.L., Deng, C.X., Li, C., Kimmel, A.R., et al. (2001). Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A 98, 6494–6499.

Tobias, P., and Curtiss, L.K. (2005). Thematic review series: The immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. J Lipid Res 46, 404–411.

Toh, S.Y., Gong, J., Du, G., Li, J.Z., Yang, S., Ye, J., Yao, H., Zhang, Y., Xue, B., Li, Q., et al. (2008). Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One 3, e2890.

Tordjman, K., Bernal-Mizrachi, C., Zemany, L., Weng, S., Feng, C., Zhang, F., Leone, T.C., Coleman, T., Kelly, D.P., and Semenkovich, C.F. (2001). PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 107, 1025–1034.

Trigatti, B., Rayburn, H., Viñals, M., Braun, A., Miettinen, H., Penman, M., Hertz, M., Schrenzel, M., Amigo, L., Rigotti, A., et al. (1999). Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A 96, 9322–9327.

Ye, J., Li, J.Z., Liu, Y., Li, X., Yang, T., Ma, X., Li, Q., Yao, Z., and Li, P. (2009). Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab 9, 177–190.

Yvan-Charvet, L., Ranalletta, M., Wang, N., Han, S., Terasaka, N., Li, R., Welch, C., and Tall, A.R. (2007). Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 117, 3900–3908.

Zhao, B., Song, J., Chow, W.N., St Clair, R.W., Rudel, L.L., and Ghosh, S. (2007). Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J Clin Invest 117, 2983–2992.

Zhao, Y., Pennings, M., Vrins, C.L., Calpe-Berdiel, L., Hoekstra, M., Kruijt, J.K., Ottenhoff, R., Hildebrand, R.B., van der Sluis, R., Jessup, W., et al. (2011). Hypocholesterolemia, foam cell accumulation, but no atherosclerosis in mice lacking ABC-transporter A1 and scavenger receptor BI. Atherosclerosis 218, 314–322.

Zhou, X., He, W., Huang, Z., Gotto, A.M. Jr, Hajjar, D.P., and Han, J. (2008). Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism. J Biol Chem 283, 2129–2138.