Liouville type theorems for stationary Navier–Stokes equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Carrillo, B., Pan, X., Zhang, Q.S., Zhao, N.: Decay and vanishing of some D-solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 237(3), 1383–1419 (2020)
Chae, D.: Liouville-type theorems for the forced Euler equations and the Navier–Stokes equations. Commun. Math. Phys. 326(1), 37–48 (2014)
Chae, D., Wolf, J.: On Liouville type theorems for the steady Navier–Stokes equations in $${\mathbb{R}}^3$$. J. Differ. Equ. 261(10), 5541–5560 (2016)
Chae, D., Wolf, J.: On Liouville type theorem for the stationary Navier–Stokes equations. Calc. Var. Part. Differ. Equ. 58(3), 11 (2019)
Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Linearized Steady Problems, vol 1: Springer Tracts in Natural Philosophy, vol. 38. Springer, New York (1994)
Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations: Steady-state problems. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)
Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier-Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(2), 381–404 (1978)
Kang, K.: On regularity of stationary Stokes and Navier–Stokes equations near boundary. J. Math. Fluid Mech. 6(1), 78–101 (2004)
Kozono, H., Terasawa, Y., Wakasugi, Y.: A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions. J. Funct. Anal. 272(2), 804–818 (2017)
Kozono, H., Terasawa, Y., Wakasugi, Y.: Asymptotic properties of steady solutions to the 3D axisymmetric Navier–Stokes equations with no swirl. https://arxiv.org/abs/2004.13471
Lin, C.-L., Uhlmann, G., Wang, J.-N.: Asymptotic behavior of solutions of the stationary Navier–Stokes equations in an exterior domain. Indiana Univ. Math. J. 60(6), 2093–2106 (2011)
Pilekcas, K.: On the asymptotic behavior of solutions of a stationary system of Navier–Stokes equations in a domain of layer type. Mat. Sb. 193(12), 69–104 (2002). (Translation in Sb. Math. 193 (2002), no. 11-12, 1801–1836)
Pileckas, K., Specovius-Neugebauer, M.: Asymptotics of solutions to the Navier–Stokes system with nonzero flux in a layer-like domain. Asymptot. Anal. 69(3–4), 219–231 (2010)
Seregin, G.: Liouville type theorem for stationary Navier–Stokes equations. Nonlinearity 29(8), 2191–2195 (2016)
Seregin, G.: Remarks on Liouville type theorems for steady-state Navier–Stokes equations. Algebra i Analiz 30(2), 238–248 (2018). (Reprinted in St. Petersburg Math. J. 30 (2019), no. 2, 321-328)
Seregin, G., Wang, W.: Sufficient conditions on Liouville type theorems for the 3D steady Navier–Stokes equations. Algebra i Analiz 31(2), 269–278 (2019). (Reprinted in St. Petersburg Math. J. 31 (2020), no. 2, 387-393)
Šverák, V., Tsai, T.-P.: On the spatial decay of 3-D steady-state Navier–Stokes flows. Commun. Part. Differ. Equ. 25(11–12), 2107–2117 (2000)
Tsai, T.-P.: Lectures on Navier–Stokes Equations. Graduate Studies in Mathematics. American Mathematical Society, Providence (2018)