Liouville type theorems for stationary Navier–Stokes equations

Tai‐Peng Tsai1
1Department of Mathematics, University of British Columbia, Vancouver, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Carrillo, B., Pan, X., Zhang, Q.S., Zhao, N.: Decay and vanishing of some D-solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 237(3), 1383–1419 (2020)

Chae, D.: Liouville-type theorems for the forced Euler equations and the Navier–Stokes equations. Commun. Math. Phys. 326(1), 37–48 (2014)

Chae, D., Wolf, J.: On Liouville type theorems for the steady Navier–Stokes equations in $${\mathbb{R}}^3$$. J. Differ. Equ. 261(10), 5541–5560 (2016)

Chae, D., Wolf, J.: On Liouville type theorem for the stationary Navier–Stokes equations. Calc. Var. Part. Differ. Equ. 58(3), 11 (2019)

Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. Linearized Steady Problems, vol 1: Springer Tracts in Natural Philosophy, vol. 38. Springer, New York (1994)

Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations: Steady-state problems. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)

Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier-Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(2), 381–404 (1978)

Kang, K.: On regularity of stationary Stokes and Navier–Stokes equations near boundary. J. Math. Fluid Mech. 6(1), 78–101 (2004)

Kozono, H., Terasawa, Y., Wakasugi, Y.: A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions. J. Funct. Anal. 272(2), 804–818 (2017)

Kozono, H., Terasawa, Y., Wakasugi, Y.: Asymptotic properties of steady solutions to the 3D axisymmetric Navier–Stokes equations with no swirl. https://arxiv.org/abs/2004.13471

Lin, C.-L., Uhlmann, G., Wang, J.-N.: Asymptotic behavior of solutions of the stationary Navier–Stokes equations in an exterior domain. Indiana Univ. Math. J. 60(6), 2093–2106 (2011)

Pilekcas, K.: On the asymptotic behavior of solutions of a stationary system of Navier–Stokes equations in a domain of layer type. Mat. Sb. 193(12), 69–104 (2002). (Translation in Sb. Math. 193 (2002), no. 11-12, 1801–1836)

Pileckas, K., Specovius-Neugebauer, M.: Asymptotics of solutions to the Navier–Stokes system with nonzero flux in a layer-like domain. Asymptot. Anal. 69(3–4), 219–231 (2010)

Seregin, G.: Liouville type theorem for stationary Navier–Stokes equations. Nonlinearity 29(8), 2191–2195 (2016)

Seregin, G.: Remarks on Liouville type theorems for steady-state Navier–Stokes equations. Algebra i Analiz 30(2), 238–248 (2018). (Reprinted in St. Petersburg Math. J. 30 (2019), no. 2, 321-328)

Seregin, G., Wang, W.: Sufficient conditions on Liouville type theorems for the 3D steady Navier–Stokes equations. Algebra i Analiz 31(2), 269–278 (2019). (Reprinted in St. Petersburg Math. J. 31 (2020), no. 2, 387-393)

Šverák, V., Tsai, T.-P.: On the spatial decay of 3-D steady-state Navier–Stokes flows. Commun. Part. Differ. Equ. 25(11–12), 2107–2117 (2000)

Tsai, T.-P.: Lectures on Navier–Stokes Equations. Graduate Studies in Mathematics. American Mathematical Society, Providence (2018)

Wang, W.: Remarks on Liouville type theorems for the 3D steady axially symmetric Navier–Stokes equations. J. Differ. Equ. 266(10), 6507–6524 (2019)