Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Định lý kiểu Liouville cho các phương trình và hệ phương trình elliptic phi tuyến liên quan đến Laplace phân số trong không gian nửa
Tóm tắt
Chúng tôi nghiên cứu sự không tồn tại của các nghiệm cho các bài toán elliptic phân số thông qua một kết quả đơn điệu, được thu được bằng phương pháp mặt phẳng chuyển động với một ước lượng loại Aleksandrov–Bakelman–Pucci đã được cải tiến cho Laplace phân số trong miền không bị chặn.
Từ khóa
#van thucTài liệu tham khảo
Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincar Anal. Non Linaire. 25(3), 567–585 (2008)
Berestycki, H., Caffarelli, L., Nirenberg, L.: Further qualitative properties for elliptic equations in unbounded domains. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25(1–2), 69–94 (1997)
Cabré, X.: On the Alexandroff–Bakel’man–Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 48(5), 539–570 (1995)
Cabré, X.: Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete Contin. Dyn. Syst. 8(2), 331–359 (2002)
Caffarelli, L., Cabré, X.: Fully nonlinear elliptic equations, volume 43 of American Mathematical Society Colloquiun Publications. American Mathematical Society, Providence (1995)
Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)
Caffarelli, L., Silvestre, L.: The Evans-Krylov theorem for non local fully non linear equations. Ann. Math. (2) 174(2), 1163–1187 (2011)
Chen, H., Felmer, P., Quaas, A.: Large solution to elliptic equations involving fractional Laplacian (preprint)
Chen, W., Li, C., Ou, B.: Qualitative properties of solutions for an integral equation. Discrete Contin. Dyn. Syst. 12(2), 347–354 (2005)
Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59(3), 330–343 (2006)
Dancer, E.N.: Some notes on the method of moving plane. Bull. Aust. Math. Soc. 46, 425–434 (1992)
Dahmani, Z., Karami, F., Kerbal, S.: Nonexistence of positive solutions to nonlinear nonlocal elliptic systems. J. Math. Anal. Appl. 346(1), 22–29 (2008)
de Figueiredo, D.G., Sirakov, B.: Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems. Math. Ann. 333(2), 231–260 (2005)
de Pablo, A., Sánchez, U.: Some liouville-type results for a fractional equation (preprint)
Fall, M.M., Weth, T.: Nonexistence results for a class of fractional elliptic boundary value problems. J. Funct. Anal. 263(8), 2205–2227 (2012)
Felmer, P., Quaas, A., Tan, J.: Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142(6), 1237–1262 (2012)
Felmer, P., Quaas, A.: Fundamental solutions and Liouville type properties for nonlinear integral operators. Adv. Math. 226(3), 2712–2738 (2011)
Felmer, P., Wang, Y.: Radial symmetry of positive solutions to equations involving the fractional Laplacian (preprint)
Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equ. 6(8), 883–901 (1981)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New york (1983)
Guillen, N., Schwab, R.: Aleksandrov–Bakelman–Pucci type estimates for integro-differential equations. Arch. Ration. Mech. Anal. 206(1), 111–157 (2012)
Jin, T., Li, Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. (2014, to appear)
Ma, L., Chen, D.: A Liouville type theorem for an integral system. Commun. Pure Appl. Anal. 5(4), 855–859 (2006)
Quaas, A., Sirakov, B.: Existence and non-existence results for fully nonlinear elliptic systems. Indiana Univ. Math. J. 58(2), 751–788 (2009)
Quaas, A., Sirakov, B.: Existence results for nonproper elliptic equations invovling the Pucci operator. Commun. Partial Differ. Equ. 31, 987–1003 (2006)
Quaas, A., Xia, A.: Liouville type theorems for nonlinear elliptic systems involving Isaacs integral operators (preprint)
Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
Tan, J., Xiong, J.: A Harnack inequality for fractional Laplace equations with lower order terms. Discrete Contin. Dyn. Syst. 31(3), 975–983 (2011)