Liouville theorems for superlinear parabolic problems with gradient structure
Tóm tắt
We improve one of the methods for obtaining Liouville theorems for superlinear parabolic problems. In particular, if we consider a positively homogeneous gradient nonlinearity $$F:{{\mathbb {R}}}^m\rightarrow {{\mathbb {R}}}^m$$ of degree $$p>1$$, where $$n>2$$, $$p
Tài liệu tham khảo
Bidaut-Véron, M.-F.: Initial blow-up for the solutions of a semilinear parabolic equation with source term. Equations aux dérivées partielles et applications. Articles dédiés à Jacques-Louis Lions, pp. 189–198. Gauthier-Villars, Paris (1998)
Duong, A.T., Phan, Q.H.: A Liouville-type theorem for cooperative parabolic systems. Discr. Contin. Dyn. Sys. 38, 823–833 (2018)
Giga, Y., Kohn, R.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36, 1–40 (1987)
Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34, 525–598 (1981)
Merle, F., Zaag, H.: A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Ann. 316, 103–137 (2000)
Phan, Q.H.: Optimal Liouville-type theorems for a parabolic system. Discrete Contin. Dynam. Systems 35, 399–409 (2015)
Phan, Q.H.: Blow-up rate estimates and Liouville type theorems for a semilinear heat equation with weighted source. J. Dyn. Differ. Equ. 29, 1131–1144 (2017)
Phan, Q.H.: Nonexistence results for a semilinear heat equation with bounded potentials. Nonlinear Anal. 192, 111667 (2020)
Phan, Q.H., Souplet, Ph: A Liouville-type theorem for the 3-dimensional parabolic Gross–Pitaevskii and related systems. Math. Ann. 366, 1561–1585 (2016)
Poláčik, P.: Entire solutions and a Liouville theorem for a class of parabolic equarions on the real line. Proc. Amer. Math. Soc. (2020). https://doi.org/10.1090/proc/14978
Poláčik, P., Quittner, P.: A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation. Nonlinear Anal. 64, 1679–1689 (2006)
Poláčik, P., Quittner, P., Souplet, Ph: Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems. Duke Math. J. 139, 555–579 (2007)
Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: parabolic equations. Indiana Univ. Math. J. 56, 879–908 (2007)
Quittner, P.: Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure. Math. Ann. 364, 269–292 (2016)
Quittner, P., Souplet, Ph.: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts, Birkhäuser, Basel, 2nd edition (2019)
Quittner, P., Souplet, Ph: Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications. Comm. Math. Phys. 311, 1–19 (2012)
Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Rational Mech. Anal. 190, 83–106 (2008)