Liouville theorems for superlinear parabolic problems with gradient structure

Springer Science and Business Media LLC - Tập 6 - Trang 145-153 - 2020
Pavol Quittner1
1Department of Applied Mathematics and Statistics, Comenius University, Bratislava, Slovakia

Tóm tắt

We improve one of the methods for obtaining Liouville theorems for superlinear parabolic problems. In particular, if we consider a positively homogeneous gradient nonlinearity $$F:{{\mathbb {R}}}^m\rightarrow {{\mathbb {R}}}^m$$ of degree $$p>1$$, where $$n>2$$, $$p

Tài liệu tham khảo

Bidaut-Véron, M.-F.: Initial blow-up for the solutions of a semilinear parabolic equation with source term. Equations aux dérivées partielles et applications. Articles dédiés à Jacques-Louis Lions, pp. 189–198. Gauthier-Villars, Paris (1998) Duong, A.T., Phan, Q.H.: A Liouville-type theorem for cooperative parabolic systems. Discr. Contin. Dyn. Sys. 38, 823–833 (2018) Giga, Y., Kohn, R.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36, 1–40 (1987) Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34, 525–598 (1981) Merle, F., Zaag, H.: A Liouville theorem for vector-valued nonlinear heat equations and applications. Math. Ann. 316, 103–137 (2000) Phan, Q.H.: Optimal Liouville-type theorems for a parabolic system. Discrete Contin. Dynam. Systems 35, 399–409 (2015) Phan, Q.H.: Blow-up rate estimates and Liouville type theorems for a semilinear heat equation with weighted source. J. Dyn. Differ. Equ. 29, 1131–1144 (2017) Phan, Q.H.: Nonexistence results for a semilinear heat equation with bounded potentials. Nonlinear Anal. 192, 111667 (2020) Phan, Q.H., Souplet, Ph: A Liouville-type theorem for the 3-dimensional parabolic Gross–Pitaevskii and related systems. Math. Ann. 366, 1561–1585 (2016) Poláčik, P.: Entire solutions and a Liouville theorem for a class of parabolic equarions on the real line. Proc. Amer. Math. Soc. (2020). https://doi.org/10.1090/proc/14978 Poláčik, P., Quittner, P.: A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation. Nonlinear Anal. 64, 1679–1689 (2006) Poláčik, P., Quittner, P., Souplet, Ph: Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems. Duke Math. J. 139, 555–579 (2007) Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: parabolic equations. Indiana Univ. Math. J. 56, 879–908 (2007) Quittner, P.: Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure. Math. Ann. 364, 269–292 (2016) Quittner, P., Souplet, Ph.: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts, Birkhäuser, Basel, 2nd edition (2019) Quittner, P., Souplet, Ph: Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications. Comm. Math. Phys. 311, 1–19 (2012) Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Rational Mech. Anal. 190, 83–106 (2008)