Liouville theorems for entire local minimizers of energies defined on the class L log L and for entire solutions of the stationary Prandtl-Eyring fluid model

Martin Fuchs1, Guo Zhang2
1Universität des Saarlandes, Saarbrücken, Germany
2Department of Mathematics and Statistics, University of Jyväskylä, Jyvaskyla, Finland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

Apushkinskaya D., Bildhauer M., Fuchs M.: Interior gradient bounds for local minimizers of variational integrals under nonstandard growth conditions. J. Math. Sci. 164(3), 345–363 (2010)

Esposito L., Mingione G.: Partial regularity for minimizers of convex integrals with L log L-growth. Nonlinear Differ. Equ. Appl. 7, 107–125 (2000)

Frehse J., Seregin G.: Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening. Trans. Am. Math. Soc. II. 193, 127–152 (1999)

Fuchs M.: Local Lipschitz regularity of vector valued local minimizers of variational integrals with densities depending on the modulus of the gradient. Math. Nachrichten 284(2–3), 266–272 (2011)

Fuchs, M.: Liouville theorems for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. (to appear)

Fuchs M., Mingione G.: Full C 1,α -regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manus. Math. 102, 227–250 (2000)

Fuchs M., Seregin G.: A regularity theory for variational integrals with L log L-growth. Calc. Var. 6, 171–187 (1998)

Fuchs M., Seregin G.: Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening. Math. Meth. Appl. Sci. 22, 317–351 (1999)

Fuchs M., Seregin G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Lecture Notes in Mathematics 1749. Springer Verlag, Berlin (2000)

Galdi, G.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations Vol. I. Springer Tracts in Natural Philosophy Vol. 38. Springer, Berlin (1994)

Giaquinta M., Modica G.: Nonlinear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math. 330, 173–214 (1982)

Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Math. Wissenschaften 224. Springer Verlag, Berlin (1998)

Han, Q., Lin, F.H.: Elliptic partial differential equations. Memoirs of the AMS. American Mathematical Society, Providence (2000)

Koch, G.: Liouville theorem for 2D Navier-Stokes equations. Preprint

Koch G., Nadirashvili N., Seregin G., Sverǎk V.: Liouville theorems for the Navier-Stokes equations and applications. Acta Math. 203, 83–105 (2009)

Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

Marcellini P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Rational Mech. Anal. 10, 267–284 (1989)

Marcellini P.: Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105, 296–333 (1993)

Marcellini P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa 23, 1–25 (1996)

Marcellini P., Papi G.: Nonlinear elliptic systems with general growth. J. Differ. Equ. 221, 412–443 (2006)

Mingione G., Siepe F.: Full C 1,α -regularity for minimizers of integral functionals with L log L-growth. Z. Anal. Anw. 18, 1083–1100 (1999)

Tolksdorf P.: Everywhere-regularity for some quasi-linear systems with a lack of ellipticity. Ann. Mat. Pura Appl. 134, 241–266 (1983)