Liouville theorems for entire local minimizers of energies defined on the class L log L and for entire solutions of the stationary Prandtl-Eyring fluid model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)
Apushkinskaya D., Bildhauer M., Fuchs M.: Interior gradient bounds for local minimizers of variational integrals under nonstandard growth conditions. J. Math. Sci. 164(3), 345–363 (2010)
Esposito L., Mingione G.: Partial regularity for minimizers of convex integrals with L log L-growth. Nonlinear Differ. Equ. Appl. 7, 107–125 (2000)
Frehse J., Seregin G.: Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening. Trans. Am. Math. Soc. II. 193, 127–152 (1999)
Fuchs M.: Local Lipschitz regularity of vector valued local minimizers of variational integrals with densities depending on the modulus of the gradient. Math. Nachrichten 284(2–3), 266–272 (2011)
Fuchs, M.: Liouville theorems for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. (to appear)
Fuchs M., Mingione G.: Full C 1,α -regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manus. Math. 102, 227–250 (2000)
Fuchs M., Seregin G.: A regularity theory for variational integrals with L log L-growth. Calc. Var. 6, 171–187 (1998)
Fuchs M., Seregin G.: Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening. Math. Meth. Appl. Sci. 22, 317–351 (1999)
Fuchs M., Seregin G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Lecture Notes in Mathematics 1749. Springer Verlag, Berlin (2000)
Galdi, G.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations Vol. I. Springer Tracts in Natural Philosophy Vol. 38. Springer, Berlin (1994)
Giaquinta M., Modica G.: Nonlinear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math. 330, 173–214 (1982)
Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Math. Wissenschaften 224. Springer Verlag, Berlin (1998)
Han, Q., Lin, F.H.: Elliptic partial differential equations. Memoirs of the AMS. American Mathematical Society, Providence (2000)
Koch, G.: Liouville theorem for 2D Navier-Stokes equations. Preprint
Koch G., Nadirashvili N., Seregin G., Sverǎk V.: Liouville theorems for the Navier-Stokes equations and applications. Acta Math. 203, 83–105 (2009)
Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)
Marcellini P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Rational Mech. Anal. 10, 267–284 (1989)
Marcellini P.: Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105, 296–333 (1993)
Marcellini P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa 23, 1–25 (1996)
Marcellini P., Papi G.: Nonlinear elliptic systems with general growth. J. Differ. Equ. 221, 412–443 (2006)
Mingione G., Siepe F.: Full C 1,α -regularity for minimizers of integral functionals with L log L-growth. Z. Anal. Anw. 18, 1083–1100 (1999)