Linking stress-signaling, glutathione metabolism, signaling pathways and xenobiotic transporters

Cancer and Metastasis Reviews - Tập 26 - Trang 59-69 - 2007
Sushma Yadav1, Ewa Zajac1, Sharad S. Singhal1, Sanjay Awasthi1
1Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, USA

Tóm tắt

Multi-specific drug-transport mechanisms are intricately involved in mediating a pleiotropic drug-resistance in cancer cells by mediating drug-accumulation defects in cells in which they are over-expressed. The existence and over-expression in drug-resistant neoplasms of transporter proteins belonging to ATP-binding cassette (ABC) family indicate that these myriad transporters contribute to the multidrug-resistance phenomena by removing or sequestering of toxins and metabolites. Another prominent mechanism of multispecific drug-resistance involves glutathione and glutathione linked enzymes, particularly those of the mercapturic acid pathway, which are involved in metabolism and excretion of both endogenous and exogenous electrophilic toxins. A key step in the mercapturic acid pathway, efflux of the glutathione-electrophile conjugate has recently been shown to be catalyzed largely by the stress-responsive protein RLIP76, a splice variant peptide endowed by the human gene RALBP1. The known involvement of RLIP76 in membrane signaling pathways and endocytosis has resulted in a new paradigm for transport and metabolism related drug-resistance in which RLIP76 plays a central role. Our recent studies demonstrating a key anti-apoptotic and stress-responsive role of RLIP76, and the demonstration of dramatic response in malignancies to RLIP76 depletion indicate that targeting this mercapturic acid pathway transporter may be a highly effective and multifaceted antineoplastic strategy.

Tài liệu tham khảo

Sarkadi, B., Homolyam, L., Szakács, G., & Váradi, A. (2006). Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system. Physiological Reviews, 86, 1179–1236. Zhengyin, Y., & Caldwell, G. W. (2001). Metabolism profiling, and cytochrome P450 inhibition & induction in drug discovery. Curr. Top. Med. Chem., 1, 403–425. Leslie, E. M., Deeley, R. G., & Cole, S. P. (2001). Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology, 167, 3–23. Borst, P., Evers, R., Kool, M., & Wijnholds, J. (1999). The multidrug resistance protein family. Biochimica et Biophysica Acta, 1461, 347–357. Sarkadi, B., Ozvegy-Laczka, C., Nemet, K., & Varadi, A. (2004). ABCG2—a transporter for all seasons. FEBS Letters, 567, 116–120. Wijnholds, J., Evers, R., van Leusden, M. R., Mol, C. A., Zaman, G. J., Mayer, U., et al. (1997). Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Natural medicines, 3, 1275–1279. Smit, J. W., Schinkel, A. H., Muller, M., Weert, B., & Meijer, D. K. (1998). Contribution of the murine mdr1a P-glycoprotein to hepatobiliary and intestinal elimination of cationic drugs as measured in mice with an mdr1a gene disruption. Hepatology, 27, 1056–1063. Awasthi, S., Cheng, J., Singhal, S. S., Saini, M. K., Pandya, U., & Pikula, S. (2000). Novel function of human RLIP76: ATP-dependent transport of glutathione conjugates and doxorubicin. Biochemistry, 39, 9327–9334. Awasthi, S., Singhal, S. S., Yadav, S., Singhal, J., Drake, K., Nadkar, A., et al. (2005). RLIP76 is a major determinant of radiation sensitivity. Cancer Research, 65, 6022–6028. Gottesman, M. M., & Pastan, I. (1993). Biochemistry of multidrug resistance mediated by the multidrug transporter. Annual Reviews of Biochemical, 62, 385–427. Walker, J. E., Saraste, M., Runswick, M. J., & Gay, N. J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal, 1, 945–951. Allikmets, R., Gerrard, B., Hutchinson, A., & Dean, M. (1996). Characterization of the human ABC superfamily: Isolation and mapping of 21 new genes using the expressed sequence tags database. Human Molecular Genetics, 5, 1649–1655. Dean, M., & Annilo, T. (2005). Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics Hum. Genet., 6, 123–142. Dean, M., Rzhetsky, A., & Allikmets, R. (2001). The human ATP-binding cassette (ABC) transporter superfamily. Genome Research, 11, 1156–1166. Szakacs, G., Annereau, J. P., Lababidi, S., Shankavaram, U., Arciello, A., Bussey, K. J., et al. (2004). Predicting drug sensitivity and resistance: Profiling ABC transporter genes in cancer cells. Cancer Cell, 6, 129–137. Higgins, C. F. (2001). ABC transporters: physiology, structure and mechanism—an overview. Research in Microbiology, 152, 205–210. Higgins, C. F., & Linton, K. J. (2001). Structural biology. The xyz of ABC transporters. Science, 293, 1782–1784. Ambudkar, S. V., Kim, I. W., & Sauna, Z. E. (2006). The power of the pump: Mechanisms of action of P-glycoprotein (ABCB1). European Journal of Pharmaceutical Sciences, 27, 392–400. Ejendal, K. F., & Hrycyna, C. A. (2002). Multidrug resistance and cancer: the role of the human ABC transporter ABCG2. Curr. Protein Pept. Sci., 3, 503–511. Allen, J. D., Brinkhuis, R. F., Wijnholds, J., & Schinkel, A. H. (1999). The mouse Bcrp1/Mxr/Abcp gene: Amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Research, 59, 4237–4241. Awasthi, S., Singhal, S. S., Sharma, R., Zimniak, P., & Awasthi, Y. C. (2003). Transport of glutathione conjugates and chemotherapeutic drugs by RLIP76 (RLIP76): A novel link between G-protein and tyrosine kinase signaling and drug resistance. International Journal of Cancer, 106, 635–646. Singhal, S. S., & Awasthi, S. (2006). Glutathione-conjugate transport and stress response signaling: Role of RLIP76. In Y. C. Awasthi (Ed.), Toxicology of glutathione transferases (pp. 231–256). Taylor and Francis, Boca-Raton, FL: CRC. Nadkar, A., Pungaliya, C., Drake, K., Zajac, E., Singhal, S. S., & Awasthi, S. (2006). Therapeutic resistance in lung cancer. Expert Opinion Drug Metab., 2, 753–777. Jakoby, W. B. (1978). The glutathione S-transferases: A group of multifunctional detoxification proteins. Adv Enzymology Mol Biol, 46, 383–414. Mannervik, B., & Danielson, U. H. (1988). Glutathione S-transferases structure and catalytic activity. CRC Critical Reviews in Biochemistry, 23, 283–337. Awasthi, Y. C., Sharma, R., & Singhal, S. S. (1994). Human glutathione S-transferases. International Journal of Biochemistry, 26, 295–308. Hayes, J. D., & Pulford, D. J. (1995). The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Reviews in Biochemistry and Molecular Biology, 30, 445–600. Ogiso, T., Tatematsu, M., Tamano, S., Tsuda, H., & Ito, N. (1985). Comparative effects of carcinogens on the induction of placental glutathione S-transferase-positive liver nodules in a short-term assay and of hepatocellular carcinomas in a long-term. Toxicologic Pathology, 13, 257–265. Ahmad, H., Wilson, D. E., Fritz, R. R., Singh, S. V., Medh, R. D., Nagle, G. T., et al. (1990). Primary and secondary structural analyses of glutathione S-transferase pi from human placenta. Archives of Biochemistry and Biophysics, 278, 398–408. Zimniak, P., Nanduri, B., Pikula, S., Singhal, S. S., Srivastava, S. K., Awasthi, S., et al. (1994). Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymatic properties. European Journal of Biochemistry, 224, 893–899. Gupta, V., Singh, S. V., Ahmad, H., Medh, R. D., & Awasthi, Y. C. (1989). Glutathione and glutathione S-transferases in a human plasma cell line resistant to melphalan. Biochemical Pharmacology, 38, 1993–2000. Sharma, R., Singhal, S. S., Srivastava, S. K., Bajpai, K. K., Frenkel, E. P., & Awasthi, S. (1993). Glutathione and glutathione linked enzymes in human small cell lung cancer cell lines. Cancer Letter, 75, 111–119. He, N. G., Srivastava, S. K., Chaubey, M., Singhal, S. S., Herzog, N. K., & Awasthi, S. (1995). An inverse relationship between doxorubicin resistance and expression of GST π in a series of doxorubicin resistant sublines of the NCI H-69 human small cell lung cancer cell lines. Biochemical Archives, 11, 9–19. Volm, M., Koomagi, R., Mattern, J., & Efferth, T. (2002). Protein expression profiles indicative for drug resistance of non-small cell lung cancer. British Journal of Cancer, 87, 251–257. LaBelle, E. F., Singh, S. V., Srivastava, S. K., & Awasthi, Y. C. (1986). Dinitrophenyl glutathione efflux from human erythrocytes is a primary active ATP-dependent transport. Biochemical Journal, 238, 443–449. Sharma, R., Gupta, S., Singh, S. V., Medh, R. D., Ahmad, H., LaBelle, E. F., et al. (1990). Purification and characterization of dinitro-phenylglutathione ATPase of human erythrocytes and its expression in other tissues. Biochemical and Biophysical Research Communications, 171, 155–161. Saxena, M., Singhal, S. S., Awasthi, S., Singh, S. V., Labelle, E. F., Zimniak, P., et al. (1992). Dinitrophenyl S-Glutathione ATPase purified from human muscle catalyzes ATP hydrolysis in the presence of leukotrienes. Archives of Biochemistry and Biophysics, 298, 231–237. Awasthi, Y. C., Singhal, S. S., Gupta, S., Ahmad, H., Zimniak, P., Radominska, A., et al. (1991). Purification and characterization of an ATPase from human liver which catalyzes ATP hydrolysis in presence of the conjugates of bilirubin, bile acids and glutathione. Biochemical and Biophysical Research Communications, 175, 1090–1096. Awasthi, S., Singhal, S. S., Srivastava, S. K., Zimniak, P., Bajpai, K. K., Saxena, M., et al. (1994). Adenosine triphosphate-dependent transport of doxorubicin, daunomyicn, and vinblastine in human tissues by a mechanism distinct from the P-glycoprotein. Journal of Clinical Investigation, 93, 958–965. Awasthi, S., Singhal, S. S., Srivastava, S. K., Torman, R. T., Zimniak, P., Bandorowicz-Pikula, J., et al. (1998). ATP–dependent human erythrocyte glutathione-conjugate transporter. I. Purification, photoaffinity labeling, and kinetic characteristics of ATPase activity. Biochemistry, 37, 5231–5238. Awasthi, S., Singhal, S. S., Pikula, S., Piper, J. T., Srivastava, S. K., Torman, R. T., et al. (1998). ATP-dependent human erythrocyte glutathione-conjugate transporter. II. Functional reconstitution of transport activity. Biochemistry, 37, 5239–5248. Singhal, S. S., Sharma, R., Gupta, S., Ahmad, H., Zimniak, P., Radominska, A., et al. (1991). The anionic conjugates of bilirubin and bile acids stimulate ATP hydrolysis by S-(Dinitrophenyl) glutathione ATPase of human erythrocyte. FEBS Letters, 281, 255–257. Awasthi, S., Singhal, S. S., Pandya, U., Singh, S. V., & Awasthi, Y. C. (1999). ATP-dependent Colchicine Transport by human erythrocyte glutathione conjugate transporter. Toxicology and Applied Pharmacology, 155, 215–226. Awasthi, S., Cheng, J. Z., Singhal, S. S., Pandya, U., Sharma, R., Singh, S. V., et al. (2001). Functional reassembly of ATP-dependent xenobiotic transport by the N- and C-terminal domains of RLIP76 and identification of ATP binding sequences. Biochemistry, 40, 4159–4168. Singhal, S. S., Singhal, J., Sharma, R., Singh, S. V., Zimniak, P., Awasthi, Y. C., et al. (2003). Role of RLIP76 in lung cancer doxorubicin resistance: I. The ATPase activity of RLIP76 correlates with doxorubicin and 4-Hydroxynonenal resistance in lung cancer cells. International Journal of Oncology, 22, 365–375. Awasthi, S., Singhal, S. S., Singhal, J., Cheng, J., Zimniak, P., & Awasthi, Y. C. (2003). Role of RLIP76 in lung cancer doxorubicin resistance: II. Doxorubicin transport in lung cancer by RLIP76. International Journal of Oncology, 22, 713–720. Yadav, S., Singhal, S. S., Singhal, J., Wickramarachchi, D., Knutson, E., Albrecht, T. B., et al. (2004). Identification of membrane-anchoring domains of RLIP76 using deletion mutant analyses. Biochemistry, 43, 16243–16253. Sharma, R., Singhal, S. S., Wickramarachchi, D., Awasthi, Y. C., & Awasthi, S. (2004). RLIP76 (RALBP1) mediated transport of leukotrienes C4 (LTC4) in cancer cells: Implications in drug resistance. International Journal of Cancer, 112, 934–942. Singhal, S. S., Yadav, S., Singhal, J., Zajac, E., Awasthi, Y. C., & Awasthi, S. (2005). Depletion of RLIP76 sensitizes lung cancer cells to doxorubicin. Biochemical Pharmacology, 70, 481–488. Stuckler, D., Singhal, J., Singhal, S. S., Yadav, S., Awasthi, Y. C., & Awasthi, S. (2005). RLIP76 transports Vinorelbine and mediates drug resistance in non-small cell lung cancer. Cancer Research, 65, 991–998. Singhal, S. S., Yadav, S., Singhal, J., Drake, K., Awasthi, Y. C., & Awasthi, S. (2005). The role of PKCα and RLIP76 in transport-mediated doxorubicin-resistance in lung cancer. FEBS Letters, 579, 4635–4641. Singhal, S. S., Wickramarachchi, D., Singhal, J., Yadav, S., Awasthi, Y. C., & Awasthi, S. (2006). Determinants of differential doxorubicin sensitivity between SCLC and NSCLC. FEBS Letters, 580, 2258–2264. Singhal, S. S., Awasthi, Y. C., & Awasthi, S. (2006). Regression of melanoma in a murine model by RLIP76 depletion. Cancer Research, 66, 2354–2360. Drake, K. J., Singhal, J., Yadav, S., Nadkar, A., Pungaliya, C., Singhal, S. S., et al. (2007). RALBP1/RLIP76 mediates multidrug resistance. International Journal of Oncology, 30, 139–144. Awasthi, S., Sharma, R., Singhal, S. S., Zimniak, P., & Awasthi, Y. C. (2002). RLIP76, amovel transporter catalyzing ATP-dependent efflux of xenobiotics. Drug Metabolism and Disposition, 30, 1300–1310. Singhal, S. S., Singhal, J., Cheng, J., Pikula, S., Sharma, R., Zimniak, P., et al. (2001). Purification and functional reconstitution of intact ral-binding GTPase activating protein, RLIP76, in artificial liposomes. Acta Biochimica Polonica, 48, 551–562. Awasthi, S., Singhal, S. S., Singhal, J., Yang, Y., Zimniak, P., & Awasthi, Y. C. (2003). Role of RLIP76 in lung cancer doxorubicin resistance: III. Anti-RLIP76 antibodies trigger apoptosis in lung cancer cells and synergistically increase doxorubicin cytotoxicity. Acta Biochimica Polonica, 22, 721–732. Loe, D. W., Almquist, K. C., Deeley, R. G., & Cole, S. P. (1996). Multidrug resistance protein (MRP)-mediated transport of leukotriene C4 and chemotherapeutic agents in membrane vesicles. Demonstration of glutathione-dependent vincristine transport. Journal of Biological Chemistry, 271, 9675–9682. Fridovich, I. (1983). Superoxide radical: an endogenous toxicant. Annual Review of Pharmacology and Toxicology, 23, 239–257. Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America, 90, 7915–7922. Williams, G. T. (1991). Programmed cell death: Apoptosis and oncogenesis. Cell, 65, 1097. Krinsky, N. I. (1992). Mechanism of action of biological antioxidant—(43429). Proceedings of the Society for Experimental Biology and Medicine, 200, 248. Kamata, H., & Hirata, H. (1999). Redox regulation of cellular signaling. Cell Signal, 11, 1–14. Greenberg, S. S., Jie, O., Zhao, X., & Wang, J. F. (1998). Role of PKC and tyrosine kinase in ethanol-mediated inhibition of LPS-inducible nitric oxide synthase. Alcohol, 16, 167–175. Rupin, A., Paysant, J., Sansilvestri-Morel, P., Lembrez, N., Lacoste, J. M., Cordi, A., et al. (2004). Role of NADPH oxidase-mediated superoxide production in the regulation of E-selectin expression by endothelial cells subjected to anoxia/reoxygenation. Cardiovascular Research, 63, 323–330. Awasthi, Y. C., Singhal, S. S., & Awasthi, S. (1995). Mechanisms of anti-carcinogenic effects of antioxidant nutrients. In R. R. Watson (Ed.), Nutrition and cancer (pp. 139–172). Boca Raton, FL: CRC. Halliwell, B. (1991). Drug antioxidant effects. A basis for drug selection. Drugs, 42, 569. Singhal, S. S., Saxena, M., Ahmad, H., Awasthi, S., Haque, A. K., & Awasthi, Y. C. (1992). Glutathione S-transferases of human lung: characterization and evaluation of the protective role of the α-class isozymes against lipid peroxidation. Archives of Biochemistry and Biophysics, 299, 232–241. Khan, M. F., Srivastava, S. K., Singhal, S. S., Chaubey, M., Awasthi, S., Petersen, D. R., et al. (1995). Iron induced lipid peroxidation in rat liver is accompanied with preferential induction of glutathione S-transferase 8-8 isozyme. Toxicology and Applied Pharmacology, 131, 63–72. Morrison, R. J., Singhal, S. S., Bidani, A., Heming, T. A., & Awasthi, S. (1998). Glutathione S-transferases of rabbit lung macrophages. Toxicology and Applied Pharmacology, 148, 229–236. Yang, Y., Cheng, J., Singhal, S. S., Sharma, A., Saini, M., Pandya, U., et al. (2001). Role of glutathione S-transferases in protection against lipid peroxidation: I. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide induced apoptosis and inhibits JNK and caspase-3 activation. Journal of Biological Chemistry, 276, 19220–19230. Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology & Medicine, 23, 81–128. Awasthi, Y. C., Yang, Y., Tiwari, N. K., Patrick, B., Sharma, A., Li, J., et al. (2004). Regulation of 4-hydroxynonenal-mediated signaling by glutathione S-transferases. Free Radical Biology & Medicine, 37(5), 607–619. Uchida, K., Shiraishi, M., Naito, Y., Torii, Y., Nakamura, Y., & Osawa, T. (1999). Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. Journal of Biological Chemistry, 274, 2234–2242. Soh, Y., Jeong, K. S., Lee, I. J., Bae, M. A., Kim, Y. C., & Song, B. J. (2000). Selective activation of the c-Jun N-terminal protein kinase pathway during 4-hydroxynonenal-induced apoptosis of PC12 cells. Molecular pharmacology, 58, 535–541. Sharma, R., Brown, D., Awasthi, S., Yang, Y., Sharma, A., Patrick, B., et al. (2004). Transfection with 4-hydroxynonenal-metabolizing glutathione S-transferase isozymes leads to phenotypic transformation and immortalization of adherent cells. European Journal of Biochemistry, 271, 1690–1701. Li, J., Sharma, R., Patrick, B., Sharma, A., Jeyabal, P. V. S., Reddy, P. M. R., et al. (2006). Regulation of CD95 (Fas) expression and Fas-mediated apoptotic signaling in HLE B-3 cells by 4-hydroxynonenal. Biochemistry, 45, 12253–12264. Awasthi, Y. C., Ansari, G. A. S., & Awasthi, S. (2005). Phase II-conjugation enzyme, glutathione S-transferases and transport system. In: Methods enzymol, 401, 379–407. Awasthi, S., Pandya, U., Singhal, S. S., Lin J. T., Thiviyanathan, V., Seifert, W. E., et al. (2000). Curcumin-glutathione interactions and the role of human glutathione S-transferase P1-1. Chem Biol Inter, 128, 19–38. Ramana, K. V., Bhatnagar, A., Srivastava, S., Yadav, U. C., Awasthi, S., Awasthi, Y. C., et al. (2006). Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE): Role of aldose reductase-catalyzed reduction of the HNE-glutathione conjugates in regulating cell growth. Journal of Biological Chemistry, 281, 17652–17660. Tammali, R., Ramana, K. V., Singhal, S. S., Awasthi, S., & Srivastava, S. K. (2006). Aldose reductase regulates growth factor-induced cyclooxygenase-2 expression and prostaglandin E2 production in human colon cancer cells. Cancer Research, 66, 9705–9713. Srivastava, S. K., Ramana, K. V., & Bhatnagar, A. (2005). Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocrine Reviews, 26, 380–392. Cheng, J. Z., Sharma, R., Yang, Y., Singhal, S. S., Sharma, A., Saini, M. K., et al. (2001). Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of RLIP76 and hGST5.8 is an early adaptive response of cells to heat and oxidative stress. Journal of Biological Chemistry, 276, 41213–41223. Yang, Y., Sharma, A., Sharma, R., Patrick, B., Singhal, S. S., Zimniak, P., et al. (2003). Cells preconditioned with mild, transient UVA irradiation acquire resistance to oxidative stress and UVA-induced apoptosis: role of 4-hydroxynonenal in UVA-mediated signaling for apoptosis. Journal of Biological Chemistry, 278, 41380–41388. Singhal, S. S., Yadav, S., Singhal, J., Awasthi, Y. C., & Awasthi, S. (2006). Mitogenic and drug-resistance mediating effects of PKC alpha require RLIP76. Biochemical and Biophysical Research Communications, 348, 722–727. Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M. F., Fritz, L. C., et al. (2003). A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature, 425, 407–410. Kampinga, H. H. (2006). Chaperones in preventing protein denaturation in living cells and protecting against cellular stress. Handbook of Experimental Pharmacology, 172, 1–42. Hu, Y., & Mivechi, N. F. (2003). HSF-1 interacts with Ral-binding protein 1 in a stress-responsive, multiprotein complex with HSP90 in vivo. Journal of Biological Chemistry, 278, 17299–17306. Sharma, R., Singhal, S. S., Cheng, J., Yang, Y., Sharma, A., Zimniak, P., et al. (2001). RLIP76 is the major ATP-dependent transporter of glutathione conjugates and doxorubicin in human erythrocytes. Archives of Biochemistry and Biophysics, 391, 171–179. Nakashima, S., Morinaka, K., Koyama, S., Ikeda, M., Kishida, M., Okawa, K., et al. (1999). Small G protein Ral and its downstream molecules regulate endocytosis of EGF and insulin receptors. EMBO Journal, 18, 3629–3642. Jullien-Flores, V., Mahe, Y., Mirey, G., Leprince, C., Meunier-Bisceuil, B., Sorkin, A., et al. (2003). RLIP76, an effector of the GTPase Ral, interacts with the AP2 complex: involvement of the Ral pathway in receptor endocytosis. Journal of Cell Science, 113, 2837–2844. Rosse, C., L’Hoste, S., Offner, N., Picard, A., & Camonis, J. H. (2003). RLIP, an effector of the Ral GTPases, is a platform for Cdk1 to phosphorylate epsin during the switch off of endocytosis in mitosis. Journal of Biological Chemistry, 278, 30597–30604. Jullien-Flores, V., Dorseuil, O., Romero, F., Letourneur, F., Saragosti, S., Berger, R., et al. (1995). Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. Journal of Biological Chemistry, 270, 22473–22477. Goldfinger, L. E., Ptak, C., Jeffery, E. D., Shabanowitz, J., Hunt, D. F., & Ginsberg, M. H. (2006). RLIP76 (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration. Journal of Cell Biology, 174(6), 877–888. Cantor, S. B., Urano, T., & Feig, L. A. (1995). Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Molecular and Cellular Biology, 15, 4578–4584. Xu, J., Zhou, Z., Zeng, L., Huang, Y., Zhao, W., Cheng, C., et al. (2001). Cloning, expression and characterization of a novel human REPS1 gene. Biochimica et Biophysica Acta, 1522, 118–121. Ikeda, M., Ishida, O., Hinoi, T., Kishida, S., & Kikuchi, A. J. (1998). Identification and characterization of a novel protein interacting with Ral-binding protein 1, a putative effector protein of. Ral Biol Chem, 273, 814–821. Oosterhoff, J. K., Penninkhof, F., Brinkmann, A. O., Grootegoed, J. A., & Blok, L. G. (2003). POB1 is downregulated during human prostate cancer progression and inhibits growth factor signaling in prostate cancer cells. Oncogene, 22, 2920–2925. Yadav, S., Zajac, E., Singhal, S. S., Singhal, J., Drake, K., Awasthi, Y. C., et al. (2005). POB1 over-expression inhibits RLIP76 mediated transport of glutathione-conjugates, drugs and promotes apoptosis. Biochemical and Biophysical Research Communications, 328, 1003–1009.