Liên kết giữa suy thoái đất và phục hồi với sự cân bằng dịch vụ hệ sinh thái thông qua việc xác định các yếu tố cảnh quan: Những hiểu biết từ vùng trầm tích loess lớn nhất toàn cầu

Springer Science and Business Media LLC - Tập 29 - Trang 83347-83364 - 2022
Haiyan Zhang1, Chong Jiang2,3,4, Yixin Wang5,6, Ying Zhao4, Qinghua Gong2,3, Jun Wang2,3, Zhiyuan Yang7
1Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
2Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, China
3Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
4Dongying Base of Integration Between Industry and Education for High-Quality Development of Modern Agriculture, Ludong University, Dongying, China
5State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
6Research Institute of Management Science, Hohai University, Nanjing, China
7Department of Infrastructure Engineering, The University of Melbourne, Parkville, Australia

Tóm tắt

Suy thoái đất là một trong những thách thức môi trường nghiêm trọng nhất ảnh hưởng sâu sắc đến các dịch vụ hệ sinh thái (ESs), từ đó đe dọa sự bền vững của hệ sinh thái. Tuy nhiên, còn rất ít nghiên cứu đủ sâu để khám phá mối quan hệ giữa tính trung hòa suy thoái đất (LDN) và sự cân bằng giữa cung và cầu dịch vụ hệ sinh thái, cũng như các sự khác biệt không gian và các nhân tố quyết định của chúng. Để lấp đầy những khoảng trống kiến thức này, nghiên cứu này đã định lượng động lực đất và sự cân bằng dịch vụ hệ sinh thái thông qua các mô hình sinh lý học và ma trận kiến thức chuyên gia, đồng thời khám phá các yếu tố quyết định không gian thông qua phương pháp hồi quy tích hợp. Từ năm 1990 đến 2018, các dự án phục hồi hệ sinh thái tại Cao nguyên Loess đã giảm đáng kể tình trạng xói mòn đất và duy trì các mô hình thặng dư dịch vụ hệ sinh thái trên toàn quy mô khu vực, ngoại trừ một số cụm đô thị cá biệt, nơi gặp khó khăn với tình trạng thiếu hụt dịch vụ hệ sinh thái. Các mô hình bảng không gian và hồi quy có trọng số theo không gian và thời gian đã chỉ ra rằng sự cân bằng dịch vụ hệ sinh thái và tình trạng xói mòn đất đồng thời bị xác định bởi các chỉ số kinh tế xã hội, thành phần và cấu trúc cảnh quan. Bên cạnh đó, các yếu tố quyết định không gian thể hiện sự không đồng nhất rõ rệt theo vùng và các hiệu ứng lan tỏa tùy thuộc vào các điều kiện môi trường và kinh tế xã hội riêng lẻ, điều này cần được xem xét trong việc giám sát, mô phỏng, dự đoán và quy hoạch cảnh quan. Do đó, phục hồi hệ sinh thái và quản lý cảnh quan không chỉ nên phụ thuộc vào các chỉ số cá nhân trong các đơn vị địa phương, mà còn cần dựa vào các khuôn khổ tích hợp và sự phối hợp từ các khu vực biên giới mà liên kết thích hợp giữa LDN và các mục tiêu duy trì sự cân bằng dịch vụ hệ sinh thái bằng cách xem xét các yếu tố quyết định quan trọng chung và các tác động bên ngoài của chúng. Nghiên cứu này làm phong phú thêm sự hiểu biết về sự tiến hóa của hệ sinh thái và duy trì sự cân bằng dịch vụ hệ sinh thái. Các phát hiện này dự kiến sẽ hỗ trợ thêm cho việc xây dựng và thực hiện chính sách nhằm giải quyết các thách thức về suy thoái đất và tăng cường sự bền vững của hệ sinh thái.

Từ khóa

#suy thoái đất #phục hồi hệ sinh thái #dịch vụ hệ sinh thái #cảnh quan #sự bền vững

Tài liệu tham khảo

Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL, (2015) Soil and human security in the 21st century. Science 348https://doi.org/10.1126/science.1261071 Ayinuer Y, Zhang F, Yu H, Kung H (2018) Quantifying the spatial correlations between landscape pattern and ecosystem service value: a case study in Ebinur Lake Basin, Xinjiang. China Ecol Eng 113:94–104 Baró F, Palomo I, Zulian G, Vizcaino P, Haase D, Gómez-Baggethun E (2016) Mapping ecosystem service capacity, flow and demand for landscape and urban planning: a case study in the Barcelona metropolitan region. Land Use Policy 57:405–417 Borrelli P, Alewell C, Alvarez P, Anache JA, Baartman J, Ballabio C, Bezak N, Biddoccu M, et al. (2021) Soil erosion modelling: a global review and statistical analysis. Sci Total Environhttps://doi.org/10.1016/j.scitotenv.2021.146494 Bryan BA, Ye Y, Zhang J, Connor JD (2018) Land-use change impacts on ecosystem services value: incorporating the scarcity effects of supply and demand dynamics. Ecosyst Serv 32:144–157 Bukvareva E, Zamolodchikov D, Grunewald K (2019) National assessment of ecosystem services in Russia: methodology and main problems. Sci Total Environ 655:1181–1196 Burkhard B, Kroll F, Nedkov S, Müller F (2012) Mapping ecosystem service supply, demand and budgets. Ecol Indic 21:17–29 Burkhard B, Kandziora M, Hou Y, Müller F (2014) Ecosystem service potentials, flows and demands concepts for spatial localisation, indication and quantification. Landsc Online 34:1–32 Cai Z, Li W, Cao S (2021) Driving factors for coordinating urbanization with conservation of the ecological environment in China. Ambio. https://doi.org/10.1007/s13280-020-01458-x Bradford MA, Carey CJ, Atwood L, Bossio D, Fenichel EP, Gennet S, Fargione J, Fisher JRB et al (2019) Soil carbon science for policy and practice. Nat Sustain 2:1070–1072 Cao S, Liu Z, Li W, Xian J (2021) Balancing ecological conservation with socioeconomic development. Ambio. https://doi.org/10.1007/s13280-020-01448-z Cao S, Xia C, Li W, Xian J 2020 Win–win path for ecological restoration Land Degrad Dev 1–9 https://doi.org/10.1002/ldr.3739 Carla LA, Marie CD, Laura JS, Justine B, Robyn B, Beatriz C, Rachel SF, Flavia FS, Jean PM, James AF, Jonathan RR (2021) Do conservation covenants consider the delivery of ecosystem services? Environ Sci Policy 115:99–107 Chaplin-Kramer R, Sharp RP, Mandle L, Sim S, Johnson J, Butnar I, Kareiva PM (2015) Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc Natl Acad Sci U S A 112(24):7402–7407 Chaplin-Kramer R, Hamel P, Sharp R, Kowal V, Wolny S, Sim S, Mueller C, 2016. Landscape configuration is the primary driver of impacts on water quality associated with agricultural expansion. Environ. Res. Lett. 11 (7) https://doi.org/10.1088/1748-9326/11/7/074012 Chaurasia H, Srivastava S, Singh JK (2020) Does seasonal variation affect diarrhoea prevalence among children in India? An analysis based on spatial regression models. Child Youth Serv Rev 118:105453 Chen W, Chi G, Li J (2019) The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci Total Environ 669:459–470 Chen W, Chi G, Li J (2020) The spatial aspect of ecosystem services balance and its determinants. Land Use Pol 90:104263 Cherlet M, Hutchinson C, Reynolds J, Hill J, Sommer S, von Maltitz G (eds) (2018) World Atlas of Desertification, 3rd edn. Publication Office of the European Union, Luxembourg, Luxembourg Chi G, Ho HC (2018) Population stress: a spatiotemporal analysis of population change and land development at the county level in the contiguous United States, 2001–2011. Land Use Policy 70:128–137 Chi G, Marcouiller DW (2013) Natural amenities and their effects on migration along the urban-rural continuum. Ann Reg Sci 50(3):861–883 Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158 Dall’erba S, 2009 Exploratory spatial data analysis, in: International Encyclopedia of Human Geography, 683–690 https://doi.org/10.1016/B978-008044910-4.00433-8 Deng C, Liu J, Liu Y, Li Z, Nie X, Hu X, Wang L, Zhang Y, Zhang G, Zhu D, Xiao L (2021) Spatiotemporal dislocation of urbanization and ecological construction increased the ecosystem service supply and demand imbalance. J Environ Manage 288:112478 DPIRD, 2020. Department of Primary Industries and Regional Development – Wind erosion control after fire. Accessed June 15, 2021, at. https://www.agric.wa.gov.au/fire/wind-erosion-control-after-fire. Elhorst JP (2014) MATLAB software for spatial panels. Int Reg Sci Rev 37(3):389–405 FAO, 2016. The State of Food and Agriculture: climate change. Agriculture and Food Security. Fu B, Wang S, Liu Y, Liu J, Liang W, Miao C (2017) Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu Rev Earth Planet Sci 45:223–243 Hao R, Yu D, Wu J (2017) Relationship between paired ecosystem services in the grassland and agro-pastoral transitional zone of China using the constraint line method. Agr Ecosyst Eviron 240:171–181 He Q, Huang B (2018) Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sens Environ 206:72–83 IPBES, 2018. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services – The Assessment Report on Land Degradation and Restoration. IPBES secretariat, Bonn, Germany. Jean PM, Jaramar VR, Andrés FSC, Sofía LC, Adrian GC, Rebecca KR, Camila H, Jonathan RR (2021) Considering landscape-level processes in ecosystem service assessments. Sci Total Environ 796:149028 Jiang C, Zhang H, Tang Z, Labzovskii L (2017) Evaluating the coupling effects of climate variability and vegetation restoration on ecosystems of the Loess Plateau. China Land Use Pol 69:134–148 Jiang C, Zhang H, Zhang Z (2018) Spatially explicit assessment of ecosystem services in China’s Loess Plateau: patterns, interactions, drivers, and implications. Global Planet Change 161:41–52 Jiang C, Zhang H, Zhang Z, Wang D (2019) Model-based assessment soil loss by wind and water erosion in China’s Loess Plateau: dynamic change, conservation effectiveness, and strategies for sustainable restoration. Glob Planet Chang 172:396–413 Jiang C, Zhao L, Dai J, Liu H, Lie Z, Wang X, Yang Z, Zhang H, Wen M, Wang J (2020) Examining the soil erosion responses to ecological restoration programs and landscape drivers: a spatial econometric perspective. J Arid Environ 183:104255 Jiang C, Yang Z, Wen M, Huang L, Liu H, Wang J, Chen W, Zhuang C (2021) Identifying the spatial disparities and determinants of ecosystem service balance and their implications on land use optimization. Sci Total Environ 793:148472 LeSage J, Pace R, Schucany W, Schilling E, Balakrishnan N (2009) Introduction to spatial econometrics. Chapman and Hall/CRC, New York Li Z, Xu X, Zhu J, Xu C, Wang K (2019a) Sediment yield is closely related to lithology and landscape properties in heterogeneous karst watersheds. J Hydrol 568:437–446 Li Z, Xu X, Zhu J, Xu C, Wang K (2019b) Effects of lithology and geomorphology on sediment yield in karst mountainous catchments. Geomorphology 343:119–128 Liniger H, Harari N, van Lynden G, Fleiner R, de Leeuw J, Bai Z, Critchley W (2019) Achieving land degradation neutrality: the role of SLM knowledge in evidence-based decision-making. Environ Sci Pol 94:123–134 Liu J, Liu M, Tian H, Zhuang D, Zhang Z, Zhang W, Tang X, Deng X (2005) Spatial and temporal patterns of China’s cropland during 1990–2000: an analysis based on Landsat TM data. Remote Sens Environ 98:442–456 Liu J, Kuang W, Zhang Z, Xu X, Qin Y, Ning J, Zhou W, Zhang S, Li R, Yan C, Wu S, Shi X, Jiang N, Yu D, Pan X, Chi W (2014) Spatio-temporal characteristics, patterns and causes of land-use changes in China since the late 1980s. J Geogr Sci 24(2):195–210 Liu Y, Lü Y, Fu B, Harris P, Wu L (2019) Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Sci Total Environ 650:1029–1040 Liu Z, Wu R, Chen Y, Fang C, Wang S (2021) Factors of ecosystem service values in a fast-developing region in China: Insights from the joint impacts of human activities and natural conditions. J Clean Prod 297:126588 Martínez-López J, Bagstad KJ, Balbi S, Magrach A, Voigt B, Athanasiadis I, Villa F (2019) Towards globally customizable ecosystem service models. Sci Total Environ 650:2325–2336 McGarigal K, Cushman SA, Ene E, 2012 Fragstats: spatial pattern analysis program for categorical and continuous maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. Available at the following web site: http://www.umass.edu/landeco/research/fragstats/fragstats.html. Meng X, Cao J, Wang X, Zhang C, Lv J (2021) Spatial characteristics of the human factors of soil erosion at the boundary of political divisions: a spatial approach. CATENA 201:105278 Metternicht G, Akhtar-Schuster M, Castillo V (2019) Implementing land degradation neutrality: from policy challenges to policy opportunities for national sustainable development. Environ Sci Pol 100:189–191 Metzger JP, Fidelman P, Sattler C, Schröter B, Maron M, Eigenbrod F, Rhodes JR (2021) Connecting governance interventions to ecosystem services provision: a socialecological network approach. People Nat 3(2):266–280 Mitchell MGE, Suarez-Castro AF, Martinez-Harms M, Maron M, McAlpine C, Gaston KJ, Johansen K, Rhodes JR (2015) Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol Evol (amst) 30:190–198 Montanarella L, Panagos P, 2021 The relevance of sustainable soil management within the European Green Deal. Land Use Policy 100https://doi.org/10.1016/j.landusepol.2020.104950 Morán-Ordóñez A, Ameztegui A, De Cáceres M, de-Miguel S, Lefèvre F, Brotons L, Coll L, (2020) Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios. Ecosyst Serv 45 (January) https://doi.org/10.1016/j.ecoser.2020.101174 Okpara UT, Stringer LC, Akhtar-Schuster M, Metternicht GI, Dallimer M, Requier-Desjardins M (2018) A social-ecological systems approach is necessary to achieve land degradation neutrality. Environ Sci Pol 89:59–66 Ouyang Z, Zheng H, Xiao Y, Polasky S, Liu J, Xu W, Wang Q, Zhang L, Xiao Y, Rao E, Jiang L, Lu F, Wang X, Yang G, Gong S, Wu B, Zeng Y, Yang W, Daily GC (2016) Improvements in ecosystem services from investments in natural capital. Science 352(3292):1455–1459 Panagos P, Standardi G, Borrelli P, Lugato E, Montanarella L, Bosello F (2018) Cost of agricultural productivity loss due to soil erosion in the European Union: from direct cost evaluation approaches to the use of macroeconomic models. Land Degrad Dev 29:471–484 Peng J, Wang X, Liu Y, Zhao Y, Xu Z, Zhao M, Qiu S, Wu J (2020) Urbanization impact on the supply-demand budget of ecosystem services: Decoupling analysis. Ecosyst Serv 44:101139 Prosdocimi M, Tarolli P, Cerda A (2016) Mulching practices for reducing soil water erosion: a review. Earth Sci Rev 161:191–203 Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC, (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). USDA Agriculture Handbook, pp. 27–28 (Washington). Sciortino M, De Felice M, De Cecco L, Borfecchia F, (2020) Remote sensing for monitoring and mapping Land Productivity in Italy: a rapid assessment methodology Catena 188https://doi.org/10.1016/j.catena.2019.104375 Shi P, Feng Z, Gao H, Li P, Zhang X, Zhu T, Li Z, Xu G, Ren Z, Xiao L (2020) Has “Grain for Green” threaten food security on the Loess Plateau of China? Ecosyst Health Sustain 6(1):1709560 Simone Q, Neville DC (2018) Most finance to halt desertification also benefits multiple ecosystem services: a key to unlock investments in Land Degradation Neutrality? Ecosyst Serv 31:265–277 Streck C, (2021) REDD+ and leakage: debunking myths and promoting integrated solutions. Clim Pol https://doi.org/10.1080/14693062.2021.1920363 Sun W, Shao Q, Liu J, Zhai J (2014) Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. CATENA 121:151–163 Sun W, Song X, Mu X, Gao P, Wang F, Zhao G (2015) Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric Forest Meteorol 209–210:87–99 UNCCD (2017) United Nations Convention to Combat Desertification – Global land outlook, 1st edn. UNCCD secretariat, Bonn, Germany UNCCD, 2019. United Nations Convention to Combat Desertification – Land in Numbers 2019. Risks and Opportunities. UNCCD secretariat, Bonn, Germany. UNCCD, 2020. United Nations Convention to Combat Desertification – The LDN Target Setting Programme. Accessed June 15, 2021, at. https://www.unccd.int/actions/ldn-target-setting-programme. UNCCD, 2021. United Nations Convention to Combat Desertification – Hot off the press: Arable lands under the pressure of multiple land degradation processes. A global perspective. Accessed June 15, 2021, at. https://knowledge.unccd.int/publicati ons/hot-press-arable-lands-under-pressure-multiple-land-degradation-processes-global. Visser S, Keesstra S, Maas G, de Cleen M, Molenaar C, (2019) Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability 11https://doi.org/10.3390/su11236792 Wang S, Fu B, Piao S, Lü Y, Ciais P, Feng X et al (2015) Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat Geosci 9:38–41 Wang S, Liu Z, Chen Y, Fang C (2021) Factors influencing ecosystem services in the Pearl River Delta, China: spatiotemporal differentiation and varying importance. Resour Conserv Recycl 168:105477 Wieder WR, Boehnert J, Bonan GB, Langseth M, (2014). Regridded Harmonized World Soil Database v1.2. Data set. Available on-line. http://daac.ornl.gov. from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. 10.3334/ORNLDAAC/1247. Wischmeier WH, Smith DD, (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: Guide for selection of practices for soil and water conservation, 282, 1965, Agricultural Research Service. US Dept of Agriculture in cooperation with Purdue Agricultural Experiment Station. Wu X, Wang S, Fu B, Feng X, Chen Y (2019a) Socio-ecological changes on the Loess Plateau of China after Grain to Green Program. Sci Total Environ 678:565–573 Wu X, Wang S, Fu B, Zhao Y, Wei Y (2019b) Pathways from payments for ecosystem services program to socioeconomic outcomes. Ecosyst Serv 39:101005 Wu X, Wei Y, Fu B, Wang S, Zhao Y, Moran EF, 2020. Evolution and effects of the social-ecological system over a millennium in China’s Loess Plateau. Sci. Adv. 6, eabc0276. Wuepper D, Borrelli P, Finger R (2020) Countries and the global rate of soil erosion. Nat Sustain 3:51–55 Zhang M, Wang K, Liu H, Zhang C, Yue Y, Qi X (2018) Effect of ecological engineering projects on ecosystem services in a karst region: a case study of northwest Guangxi. China J Clean Prod 183:831–842 Zhang Y, Xu X, Li Z, Liu M, Zhang R, Luo W (2019) Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Sci Total Environ 650:2657–2665 Zhao Y, Wu J, He C, Ding G (2017) Linking wind erosion to ecosystem services in drylands: a landscape ecological approach. Landscape Ecol 32:2399–2417 Zheng JH (1995) Statistical Dictionary. China Statistics Press, Beijing, p 190 Zhu C, Zhang X, Zhou M, He S, Gan M, Yang L et al (2020) Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou. China Ecol Indicat 117:106654