Linking 7-Nitrobenzo-2-oxa-1,3-diazole (NBD) to Triphenylphosphonium Yields Mitochondria-Targeted Protonophore and Antibacterial Agent
Tóm tắt
Appending lipophilic cations to small molecules has been widely used to produce mitochondria-targeted compounds with specific activities. In this work, we obtained a series of derivatives of the well-known fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazole (NBD). According to the previous data [Denisov et al. (2014) Bioelectrochemistry, 98, 30-38], alkyl derivatives of NBD can uncouple isolated mitochondria at concentration of tens of micromoles despite a high pKa value (~11) of the dissociating group. Here, a number of triphenylphosphonium (TPP) derivatives linked to NBD via hydrocarbon spacers of varying length (C5, C8, C10, and C12) were synthesized (mitoNBD analogues), which accumulated in the mitochondria in an energy-dependent manner. NBD-C10-TPP (C10-mitoNBD) acted as a protonophore in artificial lipid membranes (liposomes) and uncoupled isolated mitochondria at micromolar concentrations, while the derivative with a shorter linker (NBD-C5-TPP, or C5-mitoNBD) exhibited no such activities. In accordance with this data, C10-mitoNBD was significantly more efficient than C5-mitoNBD in suppressing the growth of Bacillus subtilis. C10-mitoNBD and C12-mitoNBD demonstrated the highest antibacterial activity among the investigated analogues. C10-mitoNBD also exhibited the neuroprotective effect in the rat model of traumatic brain injury.
Tài liệu tham khảo
Childress, E. S., Alexopoulos, S. J., Hoehn, K. L., and Santos, W. L. (2018) Small molecule mitochondrial uncouplers and their therapeutic potential, J. Med. Chem., 61, 4641-4655, https://doi.org/10.1021/acs.jmedchem.7b01182.
Gao, J.-L., Zhao, J., Zhu, H.-B., Peng, X., Zhu, J.-X., et al. (2018) Characterizations of mitochondrial uncoupling induced by chemical mitochondrial uncouplers in cardiomyocytes, Free Radic. Biol. Med., 124, 288-298, https://doi.org/10.1016/j.freeradbiomed.2018.06.020.
Desquiret, V., Loiseau, D., Jacques, C., Douay, O., Malthièry, Y., Ritz, P., and Roussel, D. (2006) Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells, Biochim. Biophys. Acta, 1757, 21-30, https://doi.org/10.1016/j.bbabio.2005.11.005.
Khailova, L. S., Silachev, D. N., Rokitskaya, T. I., Avetisyan, A. V., Lyamsaev, K. G., et al. (2014) A short-chain alkyl derivative of Rhodamine 19 acts as a mild uncoupler of mitochondria and a neuroprotector, Biochim. Biophys. Acta Bioenergetics, 1837, 1739-1747, https://doi.org/10.1016/j.bbabio.2014.07.006.
Denisov, S. S., Kotova, E. A., Plotnikov, E. Y., Tikhonov, A. A., Zorov, D. B., Korshunova, G. A., and Antonenko, Y. N. (2014) A mitochondria-targeted protonophoric uncoupler derived from fluorescein, Chem. Commun., 50, 15366-15369, https://doi.org/10.1039/c4cc04996a.
Biasutto, L., Sassi, N., Mattarei, A., Marotta, E., Cattelan, P., et al. (2010) Impact of mitochondriotropic quercetin derivatives on mitochondria, Biochim. Biophys. Acta, 1797, 189-196, https://doi.org/10.1016/j.bbabio.2009.10.001.
Wang, J., He, H., Xiang, C., Fan, X. Y., Yang, L. Y., Yuan, L., Jiang, F. L., and Liu, Y. (2018) Uncoupling effect of F16 is responsible for its mitochondrial toxicity and anticancer activity, Toxicol. Sci., 161, 431-442, https://doi.org/10.1093/toxsci/kfx218.
Rokitskaya, T. I., Terekhova, N. V., Khailova, L. S., Kotova, E. A., Plotnikov, E. Y., et al. (2019) Zwitterionic protonophore derived from 2-(2-hydroxyaryl)alkenylphosphonium as an uncoupler of oxidative phosphorylation, Bioconjug. Chem., 30, 2435-2443, https://doi.org/10.1021/acs.bioconjchem.9b00516.
Schwaller, M. A., Allard, B., Lescot, E., and Moreau, F. (1995) Protonophoric activity of ellipticine and isomers across the energy-transducing membrane of mitochondria, J. Biol. Chem., 270, 22709-22713, https://doi.org/10.1074/jbc.270.39.22709.
Nagamune, H., Fukushima, Y., Takada, J., Yoshida, K., Unami, A., Shimooka, T., and Terada, H. (1993) The lipophilic weak base (Z)-5-methyl-2-[2-(1-naphthyl) ethenyl]-4-piperidinopyridine (AU-1421) is a potent protonophore type cationic uncoupler of oxidative phosphorylation in mitochondria, Biochim. Biophys. Acta, 1141, 231-237, https://doi.org/10.1016/0005-2728(93)90047-j.
Ross, M. F., Kelso, G. F., Blaikie, F. H., James, A. M., Cochemé, H. M., et al. (2005) Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology, Biochemistry (Moscow), 70, 222-230, https://doi.org/10.1007/s10541-005-0104-5.
Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., et al. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore, Proc. Natl. Acad. Sci. USA, 107, 663-668, https://doi.org/10.1073/pnas.0910216107.
Antonenko, Y. N., Denisov, S. S., Silachev, D. N., Khailova, L. S., Jankauskas, S. S., et al. (2016) A long-linker conjugate of fluorescein and triphenylphosphonium as mitochondria-targeted uncoupler and fluorescent neuro- and nephroprotector, Biochim. Biophys. Acta, 1860, 2463-2473, https://doi.org/10.1016/j.bbagen.2016.07.014.
Martynov, V. I., Pakhomov, A. A., Popova, N. V., Deev, I. E., and Petrenko, A. G. (2016) Synthetic fluorophores for visualizing biomolecules in living systems, Acta Naturae, 8, 37-51, https://doi.org/10.32607/20758251-2016-8-4-33-46.
Popova, L. B., Kamysheva, A. L., Rokitskaya, T. I., Korshunova, G. A., Kirsanov, R. S., Kotova, E. A., and Antonenko, Yu. N. (2019) Protonophoric and photodynamic effects of fluorescein decyl(triphenyl)phosphonium ester on the electrical activity of pond snail neurons, Biochemistry (Moscow), 84, 1151-1165, https://doi.org/10.1134/S0006297919100043.
Denisov, S. S., Kotova, E. A., Khailova, L. S., Korshunova, G. A., and Antonenko, Y. N. (2014) Tuning the hydrophobicity overcomes unfavorable deprotonation making octylamino-substituted 7-nitrobenz-2-oxa-1,3-diazole (n-octylamino-NBD) a protonophore and uncoupler of oxidative phosphorylation in mitochondria, Bioelectrochemistry, 98, 30-38, https://doi.org/10.1016/j.bioelechem.2014.02.002.
Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C. (1963) Methods for the formation of single bimolecular lipid membranes in aqueous solution, J. Phys. Chem., 67, 534-535, https://doi.org/10.1021/j100796a529.
Johnson, D., and Lardy, H. (1967) Isolation of liver or kidney mitochondria, Methods Enzymol., 10, 94-96, https://doi.org/10.1016/0076-6879(67)10018-9.
Akerman, K. E., and Wikstrom, M. K. (1976) Safranine as a probe of the mitochondrial membrane potential, FEBS Lett., 68, 191-197, https://doi.org/10.1016/0014-5793(76)80434-6.
Perevoshchikova, I. V., Zorov, D. B., and Antonenko, Y. N. (2008) Peak intensity analysis as a method for estimation of fluorescent probe binding to artificial and natural nanoparticles: tetramethylrhodamine uptake by isolated mitochondria, Biochim. Biophys. Acta, 1778, 2182-2190, https://doi.org/10.1016/j.bbamem.2008.04.008.
Perevoshchikova, I. V., Kotova, E. A., and Antonenko, Yu. N. (2011) Fluorescence correlation spectroscopy in biology, chemistry, and medicine, Biochemistry (Moscow), 76, 497-516, https://doi.org/10.1134/S0006297911050014.
Krichevsky, O., and Bonnet, G. (2002) Fluorescence correlation spectroscopy: the technique and its applications, Rep. Prog. Phys., 65, 251-297, https://doi.org/10.1088/0034-4885/65/2/203.
Hess, S. T., Huang, S., Heikal, A. A., and Webb, W. W. (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review, Biochemistry, 41, 697-705, https://doi.org/10.1021/bi0118512.
Antonenko, Y. N., Perevoshchikova, I. V., Rokitskaya, T. I., Simonyan, R. A., Tashlitsky, V. V., and Skulachev, V. P. (2012) Effect of liposomes on energy-dependent uptake of the antioxidant SkQR1 by isolated mitochondria, J. Bioenerg. Biomembr., 44, 453-460, https://doi.org/10.1007/s10863-012-9449-9.
Firsov, A. M., Kotova, E. A., Korepanova, E. A., Osipov, A. N., and Antonenko, Y. N. (2015) Peroxidative permeabilization of liposomes induced by cytochrome c/cardiolipin complex, Biochim. Biophys. Acta, 1848, 767-774, https://doi.org/10.1016/j.bbamem.2014.11.027.
CLSI, methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved Standard, 9th ed., CLSI document M07-A9; URL: https://clsi.org/media/1928/m07ed11_sample.pdf.
Feeney, D. M., Boyeson, M. G., Linn, R. T., Murray, H. M., and Dail, W. G. (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat, Brain Res., 211, 67-77, https://doi.org/10.1016/0006-8993(81)90067-6.
Silachev, D. N., Plotnikov, E. Y., Babenko, V. A., Danilina, T. I., Zorova, L. D., et al. (2015) Intra-arterial administration of multipotent mesenchymal stromal cells promotes functional recovery of the brain after traumatic brain injury, Bull. Exp. Biol. Med., 159, 528-533, https://doi.org/10.1007/s10517-015-3009-3.
De Ryck, M., Van Reempts, J., Borgers, M., Wauquier, A., and Janssen, P. A. (1989) Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats, Stroke, 20, 1383-1390, https://doi.org/10.1161/01.str.20.10.1383.
Perevoshchikova, I. V., Sorochkina, A. I., Zorov, D. B., and Antonenko, Y. N. (2009) Safranin O as a fluorescent probe for mitochondrial membrane potential studied on a single particle level and in suspension, Biochemistry (Moscow), 74, 663-671, https://doi.org/10.1134/s000629790906011x.
Starkov, A. A., Dedukhova, V. I., and Skulachev, V. P. (1994) 6-Ketocholestanol abolishes the effect of the most potent uncouplers of oxidative phosphorylation in mitochondria, FEBS Lett., 355, 305-308, https://doi.org/10.1016/0014-5793(94)01211-3.
Plotnikov, E. Yu., Silachev, D. N., Yankauskas, S. S., Rokitskaya, T. I., Chupyrkina, A. A., et al. (2012) Mild uncoupling of respiration and oxidative phosphorylation as a mechanism providing nephron- and neuroprotective effects of penetrating cations of the SkQ family, Biochemistry (Moscow), 77, 1029-1037, https://doi.org/10.1134/S0006297912090106.
Silachev, D. N., Khailova, L. S., Babenko, V. A., Gulyaev, M. V., Kovalchuk, S. I., et al. (2014) Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria, Biochim. Biophys. Acta Gen. Subj., 1840, 3434-3442, https://doi.org/10.1016/j.bbagen.2014.09.002.
Lim, H. B., and Smith, M. (2007) Systemic complications after head injury: a clinical review, Anaesthesia, 62, 474-482, https://doi.org/10.1111/j.1365-2044.2007.04998.x.
Khailova, L. S., Nazarov, P. A., Sumbatyan, N. V., Korshunova, G. A., Rokitskaya, T. I., et al. (2015) Uncoupling and toxic action of alkyltriphenylphosphonium cations on mitochondria and the bacterium Bacillus subtilis as a function of alkyl chain length, Biochemistry (Moscow), 80, 1589-1597, https://doi.org/10.1134/S000629791512007X.
Nazarov, P. A., Osterman, I. A., Tokarchuk, A. V., Karakozova, M. V., Korshunova, G. A., et al. (2017) Mitochondria-targeted antioxidants as highly effective antibiotics, Sci. Rep., 7, 1394, https://doi.org/10.1038/s41598-017-00802-8.
Belosludtsev, K. N., Tenkov, K. S., Vedernikov, A. A., Belosludtseva, N. V., and Dubinin, M. V. (2019) Dodecyltriphenylphosphonium as an inducer of potassium-dependent permeability of rat liver mitochondria, Biochemistry (Moscow) Suppl. A Membr. Cell Biol., 13, 310-318, https://doi.org/10.1134/S1990747819040044.
Mattiasson, G., Shamloo, M., Gido, G., Mathi, K., Tomasevic, G., et al. (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma, Nat. Med., 9, 1062-1068, https://doi.org/10.1038/nm903.
Andrews, Z. B., Diano, S., and Horvath, T. L. (2005) Mitochondrial uncoupling proteins in the CNS: in support of function and survival, Nat. Rev. Neurosci., 6, 829-840, https://doi.org/10.1038/nrn1767.
Normoyle, K. P., Kim, M., Farahvar, A., Llano, D., Jackson, K., and Wang, H. (2015) The emerging neuroprotective role of mitochondrial uncoupling protein-2 in traumatic brain injury, Transl. Neurosci., 6, 179-186, https://doi.org/10.1515/tnsci-2015-0019.
Pandya, J. D., Pauly, J. R., Nukala, V. N., Sebastian, A. H., Day, K. M., et al. (2007) Post-injury administration of mitochondrial uncouplers increases tissue sparing and improves behavioral outcome following traumatic brain injury in rodents, J. Neurotrauma, 24, 798-811, https://doi.org/10.1089/neu.2006.3673.
Geisler, J. G., Marosi, K., Halpern, J., and Mattson, M. P. (2017) DNP, Mitochondrial uncoupling and neuroprotection: a little dab’ll do ya, Alzheimer’s Dement., 13, 582-591, https://doi.org/10.1016/j.jalz.2016.08.001.
Geisler, J. G. (2019) 2,4 Dinitrophenol as medicine, Cells, 8, 280, https://doi.org/10.3390/cells8030280.
Nazarov, P. A., Kirsanov, R. S., Denisov, S. S., Khailova, L. S., Karakozova, M. V., et al. (2020) Fluorescein derivatives as antibacterial agents acting via membrane depolarization, Biomolecules, 10, 309, https://doi.org/10.3390/biom10020309.
