Linker histone H1 and protein–protein interactions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Woodcock, 2006, Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length, Chromosom. Res., 14, 17, 10.1007/s10577-005-1024-3
Luger, 1997, Crystal structure of the nucleosome core particle at 2.8 a resolution., Nature, 389, 251, 10.1038/38444
Zhou, 1998, Position and orientation of the globular domain of linker histone H5 on the nucleosome, Nature, 395, 402, 10.1038/26521
Syed, 2010, Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome, Proc. Natl. Acad. Sci. U. S. A., 107, 9620, 10.1073/pnas.1000309107
Meyer, 2011, From crystal and NMR structures, footprints and cryo-electron-micrographs to large and soft structures: nanoscale modeling of the nucleosomal stem, Nucleic Acids Res., 39, 9139, 10.1093/nar/gkr573
Bednar, 1998, nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin, Proc. Natl. Acad. Sci. U. S. A., 95, 14173, 10.1073/pnas.95.24.14173
Carruthers, 1998, Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding, Biochemistry, 37, 14776, 10.1021/bi981684e
Hansen, 2006, Intrinsic protein disorder, amino acid composition, and histone terminal domains, J. Biol. Chem., 281, 1853, 10.1074/jbc.R500022200
Lee, 2004, MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis, Science, 304, 1675, 10.1126/science.1098096
Zlatanova, 1990, Histone H1 and the regulation of transcription of eukaryotic genes, Trends Biochem. Sci., 15, 273, 10.1016/0968-0004(90)90053-E
Shen, 1996, Linker histone H1 regulates specific gene expression but not global transcription in vivo, Cell, 86, 475, 10.1016/S0092-8674(00)80120-8
Ni, 2006, Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription, Genes Dev., 20, 1959, 10.1101/gad.390106
Maresca, 2005, Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts, J. Cell Biol., 169, 859, 10.1083/jcb.200503031
Steinbach, 1997, Somatic linker histones cause loss of mesodermal competence in xenopus, Nature, 389, 395, 10.1038/38755
Thiriet, 2009, Linker histone phosphorylation regulates global timing of replication origin firing, J. Biol. Chem., 284, 2823, 10.1074/jbc.M805617200
A.F., 1980, The structure of histone H1 and its location in chromatin, Nature, 288, 675, 10.1038/288675a0
Lu, 2004, Identification of specific functional subdomains within the linker histone H10 C-terminal domain, J. Biol. Chem., 279, 8701, 10.1074/jbc.M311348200
Vila, 2001, DNA-induced α-helical structure in the NH2-terminal domain of histone H1, J. Biol. Chem., 276, 46429, 10.1074/jbc.M106952200
Roque, 2005, DNA-induced secondary structure of the carboxyl-terminal domain of histone H1, J. Biol. Chem., 280, 32141, 10.1074/jbc.M505636200
Fang, 2012, DNA and nucleosomes direct distinct folding of a linker histone H1 C-terminal domain, Nucleic Acids Res., 40, 1475, 10.1093/nar/gkr866
Terme, 2011, Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency, J. Biol. Chem., 286, 35347, 10.1074/jbc.M111.281923
Hendzel, 2004, The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo, J. Biol. Chem., 279, 20028, 10.1074/jbc.M400070200
Lu, 2009, Chromatin Condensing Functions of the Linker Histone C-Terminal Domain Are Mediated by Specific Amino Acid Composition and Intrinsic Protein Disorder, Biochemistry, 48, 164, 10.1021/bi801636y
Fan, 2005, Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation, Cell, 123, 1199, 10.1016/j.cell.2005.10.028
Alami, 2003, Mammalian linker-histone subtypes differentially affect gene expression in vivo, Proc. Natl. Acad. Sci. U. S. A., 100, 5920, 10.1073/pnas.0736105100
Th'ng, 2005, H1 family histones in the nucleus: control of binding and localization by the C-terminal domain, J. Biol. Chem., 280, 27809, 10.1074/jbc.M501627200
Orrego, 2007, Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin, BMC Biol., 5, 22, 10.1186/1741-7007-5-22
Millán-Ariño, 2014, Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2, Nucleic Acids Res., 42, 4474, 10.1093/nar/gku079
Li, 2012, Dynamic distribution of linker histone H1.5 in cellular differentiation, PLoS Genet., 8, 10.1371/journal.pgen.1002879
Parseghian, 2001, Distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin II: distribution in human adult fibroblasts, J. Cell. Biochem., 83, 643, 10.1002/jcb.1224
Parseghian, 2000, The distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin: distribution in human fetal fibroblasts, Chromosom. Res., 8, 405, 10.1023/A:1009262819961
Harshman, 2013, H1 histones: current perspectives and challenges, Nucleic Acids Res., 41, 9593, 10.1093/nar/gkt700
Nalabothula, 2014, The chromatin architectural proteins HMGD1 and H1 bind reciprocally and have opposite effects on chromatin structure and gene regulation, BMC Genomics, 15, 92, 10.1186/1471-2164-15-92
Croston, 1991, Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription, Science, 251, 643, 10.1126/science.1899487
Thoma, 1979, Involvement ofhistone H1 in the organization of the nucleosome and of thesalt-dependent superstructures of chromatin, J. Cell Biol., 83, 403, 10.1083/jcb.83.2.403
Allan, 1986, Roles of H1 domains in determining higher order chromatin structure and H1 location, J. Mol. Biol., 187, 591, 10.1016/0022-2836(86)90337-2
Robinson, 2006, Structure of the “30nm” chromatin fibre: a key role for the linker histone, Curr. Opin. Struct. Biol., 16, 336, 10.1016/j.sbi.2006.05.007
Thomas, 1999, Histone H1: location and role, Curr. Opin. Cell Biol., 11, 312, 10.1016/S0955-0674(99)80042-8
Lu, 2009, Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure, Genes Dev., 23, 452, 10.1101/gad.1749309
Shen, 1995, Linker histones are not essential and affect chromatin condensation in vivo, Cell, 82, 47, 10.1016/0092-8674(95)90051-9
Shimamura, 1989, Histone H1 represses transcription from minichromosomes assembled in vitro, Mol. Cell. Biol., 9, 5573, 10.1128/MCB.9.12.5573
Laybourn, 1991, Role of nucleosomal cores and histone H1 in regulation of transcription by RNA Polymerase II, 254, 238
Lin, 2004, Reductions in linker histone levels are tolerated in developing spermatocytes but cause changes in specific gene expression, J. Biol. Chem., 279, 23525, 10.1074/jbc.M400925200
Ericsson, 1990, Presence of histone H1 on an active balbiani ring gene, Cell, 60, 73, 10.1016/0092-8674(90)90717-S
Herrera, 1996, Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts, Proc. Natl. Acad. Sci. U. S. A., 93, 11510, 10.1073/pnas.93.21.11510
Roque, 2008, Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation, Nucleic Acids Res., 36, 4719, 10.1093/nar/gkn440
Lee, 1998, Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter, EMBO J., 17, 1454, 10.1093/emboj/17.5.1454
Zheng, 2010, Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II, J. Cell Biol., 189, 407, 10.1083/jcb.201001148
Li, 2008, Linker histone H1 represses recombination at the ribosomal DNA locus in the budding yeast Saccharomyces cerevisiae, Mol. Microbiol., 67, 906, 10.1111/j.1365-2958.2007.06101.x
Menoni, 2012, Base excision repair of 8-oxoG in dinucleosomes, Nucleic Acids Res., 40, 692, 10.1093/nar/gkr761
Nishiyama, 2009, CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis, Nat. Cell Biol., 11, 172, 10.1038/ncb1831
Kim, 2008, Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription, J. Biol. Chem., 283, 9113, 10.1074/jbc.M708205200
Zakharova, 2011, Prothymosin alpha interacts with C-terminal domain of histone H1 and dissociates p53-histone H1 complex, Mol. Biol., 45, 624, 10.1134/S0026893311040157
Widlak, 2005, The histone H1 C-terminal domain binds to the apoptotic nuclease, DNA fragmentation factor (DFF40/CAD) and stimulates DNA cleavage, Biochemistry, 44, 7871, 10.1021/bi050100n
Kalashnikova, 2013, Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus, Nucleic Acids Res., 41, 4026, 10.1093/nar/gkt104
Happel, 2009, Histone H1 and its isoforms: contribution to chromatin structure and function, Gene, 431, 1, 10.1016/j.gene.2008.11.003
Szerlong, 2015, Proteomic characterization of the nucleolar linker histone H1 interaction network, J. Mol. Biol., 427, 2056, 10.1016/j.jmb.2015.01.001
Will, 2011, Spliceosome structure and function, Cold Spring Harb. Perspect. Biol., 3, 10.1101/cshperspect.a003707
Rappsilber, 2003, Large-scale proteomic analysis of the human spliceosome, Genome Res., 13, 1231
Zhou, 2002, Comprehensive proteomic analysis of the human spliceosome, Nature, 419, 182, 10.1038/nature01031
Busch, 2012, Evolution of SR protein and hnRNP splicing regulatory factors, Wiley Interdiscip. Rev. RNA., 3, 1, 10.1002/wrna.100
Winkler, 2011, The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization, J. Biol. Chem., 286, 18369, 10.1074/jbc.R110.180778
Winkler, 2011, Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events, J. Biol. Chem., 286, 41883, 10.1074/jbc.M111.301465
Orphanides, 1998, FACT, a factor that facilitates transcript elongation through nucleosomes, Cell, 92, 105, 10.1016/S0092-8674(00)80903-4
Okuwaki, 2010, Functional characterization of human nucleosome assembly protein 1-like proteins as histone chaperones, Genes Cells, 15, 13, 10.1111/j.1365-2443.2009.01361.x
Yang, 2013, H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation, Proc. Natl. Acad. Sci. U. S. A., 110, 1708, 10.1073/pnas.1213266110
Koike, 2010, Valosin-containing protein (VCP) in novel feedback machinery between abnormal protein accumulation and transcriptional suppression, J. Biol. Chem., 285, 21736, 10.1074/jbc.M109.099283
Meerang, 2011, The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks, Nat. Cell Biol., 13, 1376, 10.1038/ncb2367
Hamilton, 2011, Global chromatin fibre compaction in response to DNA damage, Biochem. Biophys. Res. Commun., 414, 820, 10.1016/j.bbrc.2011.10.021
Iborra, 2001, Coupled transcription and translation within nuclei of mammalian cells, Science, 293, 1139, 10.1126/science.1061216
David, 2012, Nuclear translation visualized by ribosome-bound nascent chain puromycylation, J. Cell Biol., 197, 45, 10.1083/jcb.201112145
Wilkinson, 2001, Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm, BioEssays, 23, 775, 10.1002/bies.1113
Sha, 2010, The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries, Mol. Cell, 36, 141, 10.1016/j.molcel.2009.09.026
Pederson, 2015, The nucleolus, Cold Spring Harb. Perspect. Biol., 3
Guetg, 2012, Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA, Mol. Cell, 45, 790, 10.1016/j.molcel.2012.01.024
Grummt, 2013, Epigenetic control of RNA polymerase I transcription in mammalian cells, Biochim. Biophys. Acta, Gene Regul. Mech., 1829, 393, 10.1016/j.bbagrm.2012.10.004
Sanij, 2008, UBF levels determine the number of active ribosomal RNA genes in mammals, J. Cell Biol., 183, 1259, 10.1083/jcb.200805146
Rickards, 2007, Nucleolin is required for RNA polymerase I transcription in vivo, Mol. Cell. Biol., 27, 937, 10.1128/MCB.01584-06
Meder, 2005, PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli, J. Cell Sci., 118, 211, 10.1242/jcs.01606
Grierson, 2013, Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription, Mutat. Res., Fundam. Mol. Mech. Mutagen., 743-744, 89, 10.1016/j.mrfmmm.2012.12.002
Birch, 2009, FACT facilitates chromatin transcription by RNA polymerases I and III, EMBO J., 28, 854, 10.1038/emboj.2009.33
Panova, 2006, Casein kinase 2 associates with initiation-competent RNA polymerase I and has multiple roles in ribosomal DNA transcription, Mol. Cell. Biol., 26, 5957, 10.1128/MCB.00673-06
Gao, 2011, Identification of nucleolar and coiled-body phosphoprotein 1 (NOLC1) minimal promoter regulated by NF-κB and CREB, BMB Rep., 44, 70, 10.5483/BMBRep.2011.44.1.70
Terns, 2006, Noncoding RNAs of the H/ACA family, Cold Spring Harb. Symp. Quant. Biol., 71, 395, 10.1101/sqb.2006.71.034
Hale, 2006, Phosphorylation of the linker histone H1 by CDK regulates its binding to HP1alpha, Mol. Cell, 22, 693, 10.1016/j.molcel.2006.04.016
Misteli, 2000, Dynamic binding of histone H1 to chromatin in living cells, Nature, 408, 877, 10.1038/35048610
Lever, 2000, Rapid exchange of histone H1.1 on chromatin in living human cells, Nature, 408, 873, 10.1038/35048603