Cơ sở dữ liệu LinguaPix: Một nghiên cứu lớn về các tiêu chuẩn đặt tên hình ảnh

Springer Science and Business Media LLC - Tập 54 Số 2 - Trang 941-954 - 2022
Agnieszka Ewa Krautz1, Emmanuel Keuleers2
1Department of English Linguistics, University of Mannheim, Schloss EW 274, 68161, Mannheim, Germany
2Department of Cognitive Science and Artificial Intelligence, Tilburg University, Warandelaan 2, 5037 AB, Tilburg, the Netherlands

Tóm tắt

Tóm tắtMục tiêu chính của nghiên cứu lớn hiện tại về các tiêu chuẩn đặt tên hình ảnh là giải quyết những thiếu sót của các bộ dữ liệu hình ảnh hiện có được sử dụng trong nghiên cứu tâm lý và ngôn ngữ bằng cách tạo ra một cơ sở dữ liệu mới gồm các hình ảnh màu chuẩn hóa mà các nhà nghiên cứu trên toàn thế giới có thể dựa vào trong các cuộc điều tra của họ. Để thực hiện điều này, chúng tôi đã áp dụng một hình thức nghiên cứu chuẩn hóa mới, cụ thể là một nghiên cứu lớn, trong đó 1620 bức ảnh màu về các đối tượng trải dài qua 42 danh mục ngữ nghĩa đã được một nhóm người nói tiếng Đức đặt tên và đánh giá. Mục tiêu là để thiết lập các tiêu chuẩn ngôn ngữ sau: thời gian bắt đầu phát ngôn (SOT), sự đồng thuận về tên gọi, độ chính xác, mức độ quen thuộc, độ phức tạp thị giác, giá trị và sự kích thích. Dữ liệu, bao gồm hơn 64.000 tệp âm thanh, được sử dụng để tạo ra cơ sở dữ liệu LinguaPix về hình ảnh, ghi âm âm thanh và các tiêu chuẩn ngôn ngữ, mà theo kiến thức của chúng tôi, đây là công cụ nghiên cứu lớn nhất thuộc loại này có sẵn (http://linguapix.uni-mannheim.de). Trong bài báo này, chúng tôi trình bày công cụ và phân tích các biến chính.

Từ khóa


Tài liệu tham khảo

Adelman, J. S., Johnson, R. L., McCormick, S. F., McKague, M., Kinoshita, S., Bowers, J. S., Perry, J. R., Lupker, S. J., Forster, K. I., Cortese, M. J., Scaltritti, M., Aschenbrenner, A. J., Coane, J. H., White, L., Yap, M. J., Davis, C., Kim, J., & Davis, C. J. (2014). A behavioral database for masked form priming. Behavior Research Methods, 46(4), 1052-1067. https://doi.org/10.3758/s13428-013-0442-y

Alario, F. X., Ferrand, L., Laganaro, M., New, B., Frauenfelder, U. H., & Segui, J. (2004). Predictors of picture naming speed. Behavior Research Methods, Instruments, & Computers, 36(1), 140-155. https://doi.org/10.3758/bf03195559

Altarriba, J., & Basnight-Brown, D. M. (2009). An overview of semantic processing in bilinguals: Methods and findings. The Bilingual Mental Lexicon: Interdisciplinary Approaches, 79-99. https://doi.org/10.21832/9781847691262-006

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L., Simpson, G. B., & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445-459. https://doi.org/10.3758/bf03193014

Bates, E., D’Amico, S., Jacobsen, T., Székely, A., Andonova, E., Devescovi, A., Herron, D., Lu, C. C., Pechmann, T., Pléh, C., Wicha, N., Federmeier, K., Gerdjikova, I., Gutierrez, G., Hung, D., Hsu, J., Iyer, G., Kohnert, K., Mehotcheva, T., ... Tzeng, O. (2003). Timed picture naming in seven languages. Psychonomic Bulletin & Review, 10(2), 344-380. https://doi.org/10.3758/bf03196494

Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527-536. https://doi.org/10.1016/j.tics.2011.10.001

Blackett, D. S., Harnish, S. M., Lundine, J. P., Zezinka, A., & Healya, E. W. (2017). The Effect of Stimulus Valence on Lexical Retrieval in Younger and Older Adults. Journal of Speech, Language, and Hearing Research, 60(7), 2081–2089.

Bonin, P., Méot, A., Laroche, B., Bugaiska, A., & Perret, C. (2019). The impact of image characteristics on written naming in adults. Reading and Writing, 32(1), 13-31.

Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Instruction manual and affective ratings. (Technical report C-1). University of Florida, Center for Research in Psychophysiology.

Brodeur, M. B., Dionne-Dostie, E., Montreuil, T., & Lepage, M. (2010). The bank of standardized stimuli (BOSS), a new set of 480 normative photos of objects to be used as visual stimuli in cognitive research. PloS One, 5(5), e10773. https://doi.org/10.1371/journal.pone.0010773

Brodeur, M. B., Kehayia, E., Dion-Lessard, G., Chauret, M., Montreuil, T., Dionne-Dostie, E., & Lepage, M. (2012). The bank of standardized stimuli (BOSS): comparison between French and English norms. Behavior Research Methods, 44(4), 961-970. https://doi.org/10.3758/s13428-011-0184-7

Brodeur, M. B., Guérard, K., & Bouras, M. (2014). Bank of standardized stimuli (BOSS) phase II: 930 new normative photos. PloS One, 9(9), e106953. https://doi.org/10.1371/journal.pone.0106953

Cabitza, F. (2015). Re: What are the implications of using even or odd Likert scales for a research survey? Retrieved on 20.05.2021 from: https://www.researchgate.net/post/What_are_the_implications_of_using_even_or_odd_Likert_scales_for_a_research_survey/55b7a671614325f38f8b457a/citation/download. Accessed 1 June 2021

Cop, U., Dirix, N., Drieghe, D., & Duyck, W. (2017). Presenting GECO: An eye-tracking corpus of monolingual and bilingual sentence reading. Behavior Research Methods, 49(2), 602-615. https://doi.org/10.3758/s13428-016-0734-0

Dan-Glauser, E. S., & Scherer, K. R. (2011). The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance. Behavior Research Methods, 43(2), 468.

De Houwer, J., & Hermans, D. (1994). Differences in the affective processing of words and pictures. Cognition & Emotion, 8(1), 1–20. https://doi.org/10.1080/02699939408408925

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, (pp. 248-255). IEEE. https://doi.org/10.1109/cvpr.2009.5206848

Duñabeitia, J. A., Crepaldi, D., Meyer, A. S., New, B., Pliatsikas, C., Smolka, E., & Brysbaert, M. (2018). MultiPic: A standardized set of 750 drawings with norms for six European languages. The Quarterly Journal of Experimental Psychology, 71(4), 808-816. https://doi.org/10.1080/17470218.2017.1310261

Estes, Z., & Adelman, J. S. (2008). Automatic vigilance for negative words is categorical and general. Emotion, 8(4), 453–457. https://doi.org/10.1037/a0012887

Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A., Augustinova, M., & Pallier, C. (2010). The French Lexicon Project: Lexical decision data for 38,840 French words and 38,840 pseudowords. Behavior Research Methods, 42(2), 488-496. https://doi.org/10.3758/brm.42.2.488

Hutchison, K. A., Balota, D. A., Neely, J. H., Cortese, M. J., Cohen-Shikora, E. R., Tse, C. S., Yap, M. J., Bengson, J. J., Niemeyer, D., & Buchanan, E. (2013). The semantic priming project. Behavior Research Methods, 45(4), 1099-1114. https://doi.org/10.3758/s13428-012-0304-z

Johnston, R. A., Dent, K., Humphreys, G. W., & Barry, C. (2010). British-English norms and naming times for a set of 539 pictures: The role of age of acquisition. Behavior Research Methods, 42(2), 461-469.

Keuleers, E., & Balota, D. A. (2015). Megastudies, crowdsourcing, and large datasets in psycholinguistics: An overview of recent developments. Quarterly Journal of Experimental Psychology, 68(8), 1457-1468. https://doi.org/10.1080/17470218.2015.1051065

Keuleers, E., & Marelli, M. (2020). Resources for mental lexicon research: A delicate ecosystem. In V. Pirrelli, I. Plag, & W. U. Dressler (Eds.), Word Knowledge and Word Usage (pp. 167–188). De Gruyter Mouton. https://doi.org/10.1515/9783110440577-005

Keuleers, E., Diependaele, K., & Brysbaert, M. (2010). Practice effects in large-scale visual word recognition studies: A lexical decision study on 14,000 Dutch mono- and disyllabic words and nonwords. Frontiers in Psychology, 1, Article 174, 1-15. https://doi.org/10.3389/fpsyg.2010.00174

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research Methods, 44(1), 287-304. https://doi.org/10.3758/s13428-011-0118-4

Kousta, S.-T., Vinson, D. P., & Vigliocco, G. (2009). Emotion words, regardless of polarity, have a processing advantage over neutral words. Cognition, 112(3), 473–481.

Kuperman, V., Estes, Z., Brysbaert, M., & Warriner, A. B. (2014). Emotion and language: Valence and arousal affect word recognition. Journal of Experimental Psychology: General, 143(3), 1065–1081. https://doi.org/10.1037/a0035669

Kurdi, B., Lozano, S., & Banaji, M. R. (2017). Introducing the open affective standardized image set (OASIS). Behavior Research Methods, 49(2), 457-470. https://doi.org/10.3758/s13428-016-0715-3

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International affective picture system (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention, 1, 39-58

Larsen, R. J., Mercer, K. A., Balota, D. A., & Strube, M. J. (2008). Not all negative words slow down lexical decision and naming speed: Importance of word arousal. Emotion, 8(4), 445–452. https://doi.org/10.1037/1528-3542.8.4.445

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In: European Conference on Computer Vision, (pp. 740-755). Springer. https://doi.org/10.1007/978-3-319-10602-1_48

McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30-46.

Moreno-Martínez, F. J., & Montoro, P. R. (2012). An ecological alternative to Snodgrass & Vanderwart: 360 high quality colour images with norms for seven psycholinguistic variables. PloS One, 7(5), e37527. https://doi.org/10.1371/journal.pone.0037527

Perret, C., & Bonin, P. (2019). Which variables should be controlled for to investigate picture naming in adults? A Bayesian meta-analysis. Behavior Research Methods, 51(6), 2533-2545.

Pratto, F., & John, O. P. (1991). Automatic vigilance: The attention-grabbing power of negative social information. Journal of Personality and Social Psychology, 61(3), 380–391. https://doi.org/10.1037/0022-3514.61.3.380

Rossion, B., & Pourtois, G. (2004). Revisiting Snodgrass and Vanderwart's object pictorial set: The role of surface detail in basic-level object recognition. Perception, 33(2), 217-236. https://doi.org/10.1068/p5117

Roux, F., Armstrong, B. C., & Carreiras, M. (2017). Chronset: An automated tool for detecting speech onset. Behavior Research Methods, 49(5), 1864-1881. https://doi.org/10.3758/s13428-016-0830-1

Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145–172.

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User's Guide. Psychology Software Tools Incorporated.

Seidenberg, M. S., & Waters, G. S. (1989). Reading words aloud-a mega study. Bulletin of the Psychonomic Society, 27. 489.

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420-428.

Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6(2), 174-215. https://doi.org/10.1037/0278-7393.6.2.174

Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45(4), 1191–1207. https://doi.org/10.3758/s13428-012-0314-x

White, K. K., Abrams, L., LaBat, L. R., & Rhynes, A. M. (2016). Competing influences of emotion and phonology during picture-word interference. Language, Cognition and Neuroscience, 31(2), 265–283. https://doi.org/10.1080/23273798.2015.1101144

Yap, M. J., Liow, S. J. R., Jalil, S. B., & Faizal, S. S. B. (2010). The Malay Lexicon Project: A database of lexical statistics for 9,592 words. Behavior Research Methods, 42(4), 992-1003. https://doi.org/10.3758/brm.42.4.992