Lines of curvature on surfaces immersed in ℝ4

Carlos Gutierrez1, Irwen Guadalupe2, Renato Tribuzy3, Víctor Guíñez4
1IMPA, Rio de Janeiro, Brazil
2IMECC-UNICAMP, Universidade Estadual de Campinas, Campinas, Brazil
3Departamento de Matemática, Universidade Federal do Amazonas, Manaus, Brazil
4Facultad de Ciencias. I. C. E., Universidad de Santiago de Chile, Santiago, Chile

Tóm tắt

The differential equation of thelines of curvature for immersions of surfaces into ℝ4 is established. It is shown that, for a class of generic immersions of a surface into ℝ4 in theC r -topology,r≥4, all of the umbilic points are locally topologically stable. This type of umbilic points is described.

Tài liệu tham khảo

[B-P] Burnside W. S. and Panton A. W.,The Theory of Equations Dover Publications, Inc. New York. (1912). [GGST] Guadalupe I., Gutiérrez C., Sotomayor, J. and Tribuzy R.Principal Lines on Surfaces Minimally Immersed In Constantly Curved 4-spaces. Dynamical Systems and bifurcation theory, Pitman Research Notes in Mathematics Series 160 (1987), pp. 91–120. [G-S] Gutierrez C. and Sotomayor J.Principal Lines on Surfaces Immersed with Constant Mean Curvature. Trans. of the Ame. Math. Soc. Vol. 293, No. 2 (1986), pp. 751–766. [Jac] Jacobowitz, H.The Gauss-Codazzi Equations. Tensor, N., S., 39 (1982), pp. 15–22. [Lit] Little J. A.On Singularities of Submanifolds of a Higher Dimensional Euclidean Space. Ann. Mat. Pura App. 83 (1969), pp. 261–335. [M-P] Palis J. and de Melo W.Geometric Theory of Dynamical Systems. Springer-Verlag, 1982. [R-S] Ramírez-Galarza A. and Sánchez-Bringas F.Lines of Curvature near Umbilic Points on Surfaces Immersed in ℝ4. Annals of Global Analysis and Geometry, 13 (1995), pp. 129–140. [Spi] Spivak M. A.Comprehensive Introduction to Differential Geometry. Vol. 5, Publish or Perish Inc., Berkeley, 1979.