Linear transfomation-based anisotropic yield functions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aretz, H., 2003. Modellierung des anisotropen Materialverhaltens von Blechen mit Hilfe der Finite-Elemente-Methode. Doctoral thesis, RWTH Aachen University, Shaker-Verlag (2003), Germany
Banabic, 2001, Anisotropy of sheet Metals, 119
Banabic, 2003, Description of anisotropic behaviour of AA3103-0 aluminium alloy using two recent yield criteria, J. Phys. IV, 105, 297
Banabic, D., Aretz, H., Comsa, D.S., Paraianu, L, 2004. An improved analytical description of orthotropy in metallic sheets. Int. J. Plasticity, in press
Barlat, 1989, Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions, Int. J. Plasticity, 5, 51, 10.1016/0749-6419(89)90019-3
Barlat, 1998, Modeling precipitate-induced anisotropy in binary Al–Cu alloys, Mater. Sci. Eng., A257, 47, 10.1016/S0921-5093(98)00823-5
Barlat, 1991, A six-component yield function for anisotropic materials, Int. J. Plasticity, 7, 693, 10.1016/0749-6419(91)90052-Z
Barlat, 1997, Yield function development for aluminum alloy sheets, J. Mech. Phys. Solids, 45, 1727, 10.1016/S0022-5096(97)00034-3
Barlat, F., Banabic, D., Cazacu, O., 2002. Anisotropy in sheet metals. In: Yang, D.Y., Oh, S.I., Huh, H., Kim, Y.H., (Eds.), Proceedings of the Fifth International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Jeju Island, Korea, October 2002, pp. 515–524
Barlat, 2003, Plane stress yield function for aluminum alloy sheet. Part I: Theory, Int. J. Plasticity, 19, 1297, 10.1016/S0749-6419(02)00019-0
Barlat, 2004, Yield surface plasticity and anisotropy, 145
Bishop, 1951, A theory of the plastic distortion of a polycrystalline aggregate under combined stresses, Phil. Mag., 42, 414, 10.1080/14786445108561065
Boehler, 1970, Equilibre limite des sols anisotropes, J. Mécanique, 9, 5
Bourne, 1950, On the correlation of the directional properties of rolled sheet in tension and cupping tests, Phil. Mag., 41, 671, 10.1080/14786445008560998
Bron, 2004, A yield function for anisotropic materials. Application to aluminum alloys, Int. J. Plasticity, 20, 937, 10.1016/j.ijplas.2003.06.001
Cazacu, 2001, Generalization of Drucker’s yield criterion to orthotropy, Math. Mech. Solids, 6, 613, 10.1177/108128650100600603
Cazacu, 2003, Application of the theory of representation to describe yielding of anisotropic aluminum alloys, Int. J. Eng. Sci., 41, 1367, 10.1016/S0020-7225(03)00037-5
Cazacu, 2004, A criterion for description of anisotropy and yield differential effects in pressure-insensitive materials, Int. J. Plasticity, 20, 2027, 10.1016/j.ijplas.2003.11.021
Hecker, 1976, Experimental studies of yield phenomena in biaxially loaded metals, 1
Hershey, 1954, The plasticity of an isotropic aggregate of anisotropic face centred cubic crystals, J. Appl. Mech., 21, 241, 10.1115/1.4010900
Hill, 1948, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London, A193, 281, 10.1098/rspa.1948.0045
Hosford, 1972, A generalized isotropic yield criterion, J. Appl. Mech. Trans. ASME, 39, 607, 10.1115/1.3422732
Karafillis, 1993, A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solids, 41, 1859, 10.1016/0022-5096(93)90073-O
Lebensohn, 1993, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metall. Mater., 41, 2611, 10.1016/0956-7151(93)90130-K
Lippman, 1970, Matrixungleichungen und die Konvexität der Fliessfläche, Zeit. Angew. Mech., 50, 134, 10.1002/zamm.19700500168
Liu, 1982, On representations of anisotropic invariants, Int. J. Eng. Sci., 20, 1099, 10.1016/0020-7225(82)90092-1
Logan, 1980, Upper-bound anisotropic yield locus calculations assuming pencil glide, Int. J. Mech. Sci., 22, 419, 10.1016/0020-7403(80)90011-9
Paul, 1968, Macroscopic criteria for plastic flow and brittle fracture, vol. 1, 313
Peeters, 2001, Work hardening/softening behaviour of b.c.c. polycrystals during changing strain path: II. An integrated model based on substructure and texture evolution, and its predictions of the stress–strain behaviour of an IF steel during two-stage strain paths, Acta Mater., 49, 1607, 10.1016/S1359-6454(01)00066-0
Richmond, 1980
Rockafellar, 1972
Sobotka, 1969, Theorie des plastischen Fliessens von anisotropen Körpern, Zeit. Angew. Math. Mech., 49, 25, 10.1002/zamm.19690490105
Spitzig, 1984, The effect of pressure on the flow stress of metals, Acta Metall., 32, 457, 10.1016/0001-6160(84)90119-6
Spitzig, 1976, The effect of hydrostatic pressure on the deformation behavior of Maraging and HY-80 steels and its implication for plasticity theory, Metall. Trans., 7A, 1703, 10.1007/BF02817888
Teodosiu, 1998, Microstructure in the continuum modeling of plastic anisotropy, 149
Tong, W., 2004. A planar anisotropic plastic flow theory for monoclinic sheet metals. Int. J. Mech. Sci., submitted for publication
Von Mises, 1928, Mechanics der plastischen Formänderung von Kristallen, Zeitschrift Angewandte Mathematik Mechanik, 8, 161, 10.1002/zamm.19280080302
Wang, 1970, A new representation theorem for isotropic functions, Part I and II, Arch. Rat. Mech. An., 36, 166, 10.1007/BF00272241
Yu, 2002, Advances in strength theories for materials under complex stress state in the 20th Century, Appl. Mech. Rev., 55, 198, 10.1115/1.1472455
Życzkowski, 1981
Życzkowski, 2001, Anisotropic yield conditions, 155