Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons

Springer Science and Business Media LLC - Tập 2 Số 1-4 - Trang 209-233 - 1987
Leonidas J. Guibas1, John Hershberger1, Daniel Leven2, Micha Sharir2, Robert E. Tarjan3
1Computer Science Department, Stanford University, 94305, Stanford, CA, USA
2School of Mathematical Sciences, Tel-Aviv University, 69978 Tel Aviv. Israel
3Department of Computer Science, Princeton University, 08544, Princeton, NJ, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

T. Asano, Efficient algorithms for finding the visibility polygon for a polygonal region with holes, Manuscript, University of California at Berkeley.

D. Avis and G. T. Toussaint, An optimal algorithm for determining the visibility of a polygon from an edge,IEEE Trans. Comput.,30 (1981), 910–914.

B. Chazelle, A theorem on polygon cutting with applications,Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science, 1982, pp. 339–349.

B. Chazelle and L. Guibas, Visibility and intersection problems in plane geometry,Proceedings of the ACM Symposium on Computational Geometry, 1985, pp. 135–146 (also submitted toDiscrete Comput. Geom.).

H. Edelsbrunner, L. Guibas, and J. Stolfi, Optimal point location in monotone subdivisions, Technical Report 2, DEC/SRC, Palo Alto, CA, 1984.

H. A. El Gindy, An efficient algorithm for computing the weak visibility polygon from an edge in simple polygons, Manuscript, McGill University, 1984.

H. A. El Gindy, Hierarchical decomposition of polygons with applications, Ph.D. Dissertation, School of Computer Science, McGill University, 1985.

H. A. El Gindy and D. Avis, A linear algorithm for computing the visibiility polygon from a point,J. Algorithms,2 (1981), 186–197.

S. Fisk, A short proof of Chvatal's watchman theorem,J. Combin. Theory Ser. B, 24 (1978), 374.

A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent problems,ACM Trans. Graphics,3 (1984), 153–174.

M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a simple polygon,Inform. Process. Lett.,7 (1978), 175–179.

R. L. Graham and F. F. Yao, Finding the convex hull of a simple polygon,J. Algorithms,4 (1983), 324–331.

D. H. Greene and D. E. Knuth,Mathematics for the Analysis of Algorithms, Birkhäuser, Boston, 1982.

L. Guibas, E. McCreight, M. Plass, and J. Roberts, A new representation for linear lists,Proceedings of the Ninth ACM Symposium on Theory of Computing, 1977, pp. 49–60.

L. Guibas, L. Ramshaw, and J. Stolfi, A kinetic framework for computational geometry,Proceedings of the 24th IEEE Symposium on Foundations of Computer Science, 1983, pp. 100–111.

P. T. Highman, The ears of a polygon,Inform. Process. Lett.,15 (1982), 196–198.

S. Huddieston and K. Mehlhorn, A new data structure for representing sorted lists,Acta Inform.,17 (1982), 157–184.

D. Kirkpatrick, Optimal search in planar subdivisions,SIAM J. Comput.,12 (1983), 28–35.

D. T. Lee, Visibility of a simple polygon,Comput. Vision, Graphics Image Process.,22 (1983) 207–221.

D. T. Lee and A. Lin, Computing the visibility polygon from an edge, Manuscript, Northwestern University, 1984.

D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear battiers,Networks,14 (1984), 393–410.

D. McCallum and D. Avis, A linear algorithm for finding the convex hull of a simple polygon,Inform. Process. Lett.,9 (1979), 201–206.

K. Mehlhorn,Data Structues and Efficient Algorithms, Vol. I, Springer-Verlag: Berlin, 1984.

M. A. Peshkin and A. C. Sanderson, Reachable grasps on a polygon: the convex rope algorithm, Technical Report CMU-RI-TR-85-6, Carnegie-Mellon University, 1985. AlsoIEEE J. Robotics Automat. (1986) (to appear).

F. P. Preparata and M. I. Shamos,Computational Geometry, Springer-Verlag, New York, 1985.

F. P. Preparata and K. J. Supowit, Testing a simple polygon for monotonicity,Inform. Process. Lett.,12 (1981), 161–164.

D. D. Sleator and R. E. Tarjan, Self-adjusting binary search trees,J. Assoc. Comput. Mach., 32 (1985), 652–686.

S. Suri, Finding minimum link paths inside a simple polygon,Comput. Vision, Graphics Image Process. (1986) (to appear).

R. E. Tarjan,Data Structures and Network Algorithme, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathemataics, Philadelphia, PA, 1983.

R. E. Tarjan and C. Van Wyk, AnO(n log logn) time algorithm for triangulating simple polygons,SIAM J. Comput. (submitted).

G. Toussaint, Shortest path solves edge-to-edge visibility in a polygon, Technical Report SOCS-85.19, McGill University, 1985.