Linear response and transport equations in interacting phonon systems

Zeitschrift für Physik B Condensed Matter - Tập 8 - Trang 141-166 - 1968
Rudolf Klein1, Roland K. Wehner1
1Laboratories RCA Ltd., Zürich, Switzerland

Tóm tắt

A derivation of a transport equation for phonons, in terms of the microscopic description of an anharmonic crystal, is given. The starting point is a complete set of equations for the phonon Green function, the self-energy, and the vertex part, as given by a functional method using real times. The role of the external source field for introducing nonequilibrium into the system is discussed in detail. The essential equivalence of some recent theories is shown, which have been proposed in connection with phonon transport and second sound. The integral equation for the vertex part is related to a Boltzmann equation for a position and time dependent phonon density. For this quantity an operator, namely the Wigner operator, can be extracted from the energy density. It is shown, however, that the energy density can only approximately be expressed in terms of this phonon density. With the aid of the Wigner operator the variable phonon density is represented by a Kubo formula as the linear response of the phonon quasiparticle gas to the external source field. Cubic and quartic anharmonicities are taken into account and their influence on the collision operator and on the drift term of the transport equation is discussed.

Tài liệu tham khảo

Boltzmann, L.: Vorlesungen über Gastheorie. Leipzig: Barth 1896–1898. Pauli, W.: Sommerfeld-Festschrift. Leipzig: Hirzel 1928. Van Hove, L.: Physica21, 517 (1955);23, 441 (1957);25, 268 (1959). Prigogine, I.: Non-equilibrium statistical mechanics. New York: Interscience 1962. Kohn, W., andJ. M. Luttinger: Phys. Rev.108, 590 (1957). Kubo, R.: J. Phys. Soc. Japan12, 570 (1957). See, for instance,Fujita, S., andR. Abe: J. math. Phys.3, 350 (1962). Prange, R. E., andL. P. Kadanoff: Phys. Rev.134, A 566 (1964). Holstein, T.: Ann. Phys. (N.Y.)29, 410 (1964). Abrikosov, A. A., L. P. Gorkov, andI. Ye. Dzyaloshinskii: Quantum field theoretical methods in statistical physics. Oxford: Pergamon 1965. Peierls, R. E.: Ann. Phys.3, 1055 (1929); for a review seeCarruthers, P.: Rev. mod. Phys.33, 92 (1961). Woodruff, T. O., andH. Ehrenreich: Phys. Rev.123, 1553 (1961). Horie, C., andJ. A. Krumhansl: Phys. Rev.136, A 1397 (1964). Kwok, P. C., andP. C. Martin: Phys. Rev.142, 495 (1966). Sham, L. J.: Phys. Rev.156, 494 (1967). Götze, W., andK. H. Michel: Phys. Rev.157, 738 (1967). Wehner, R. K.: Phys. Status solidi22, 527 (1967). Enz, C. P.: Ann. Phys. (N.Y.)46, 114 (1968). Born, M., andK. Huang: Dynamical theory of crystal lattices. London: Oxford University Press 1954. Martin, P. C., andJ. Schwinger: Phys. Rev.115, 1342 (1959). For a general account of the method of functionals seeBonch-Bruevich, V. L., andS. V. Tyablikov: The Green function method in statistical mechanics. Amsterdam: North-Holland 1962. Högberg, T.: Ark. Fys. (Sweden)29, 519 (1966);34, 121 (1967). Wehner, R.: Phys. Status solidi15, 725 (1966). Maradudin, A. A., andA. E. Fein: Phys. Rev.128, 2589 (1962). Cowley, R. A.: Advances in Phys.12, 421 (1963). Klein, R.: Phys. kond. Materie6, 38 (1967). Cochran, W., andR. A. Cowley: Handbuch der Physik, Bd. XXV/2a, p. 124ff. Berlin-Heidelberg-New York: Springer 1967. Enz, C. P.: Communication to the 8th Scottish Universities’ Summer School in Physics, St. Andrews, Aug. 1–19, 1967. —, andJ. P. Müller: To be published.