Linear maps preserving the Lorentz-cone spectrum in certain subspaces of $$M_{n}$$

M.I. Bueno1, Susana Furtado2, K. C. Sivakumar3
1Department of Mathematics and College of Creative Studies, University of California Santa Barbara, Santa Barbara, USA
2CEAFEL and Faculdade de Economia da Universidade do Porto, Porto, Portugal
3Department of Mathematics, Indian Institute of Technology Madras, Chennai, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Prog. 95, 3–51 (2003)

Alizadeh, R., Shakeri, F.: Linear maps preserving Pareto eigenvalues. Linear Multilinear Algebra 65, 1053–1061 (2017)

Cao, C.-G., Zhang, X.: Additive rank-one preserving surjections on symmetric matrix spaces. Linear Algebra Appl. 362, 145–151 (2003)

Dieudonne, J.: Sur une généralisation du groupe orthogonal à quatre variables. Arch. Math. 1, 282–287 (1948)

Nemeth, S.Z., Gowda, M.S.: The cone of $$Z$$-transformations on the Lorentz cone. Elec. J. Linear Algebra 35, 387–393 (2019)

Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl. 292, 1–14 (1999)

Seeger, A., Torki, M.: On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372, 181–206 (2003)

Seeger, A., Torki, M.: On spectral maps induced by convex cones. Linear Algebra Appl. 592, 651–92 (2020)