Linear invariant measures for recurrent linear systems

Springer Science and Business Media LLC - Tập 92 - Trang 185-205 - 1995
A. I. Alonso1, R. Obaya1
1E. T. S. de Ingenieros Industriales Departamento de Matemática Aplicada a la Ingeniería, Universidad de Valladolid, Valladolid, Spain

Tóm tắt

We consider a self-adjoint operator defined by a bidimensional linear system. We extend the Ishii-Pastur-Kotani theory that allows us to identify the absolutely continuous spectrum. From here we deduce that for almost everyE with null Lyapunov exponent the real projective flow admits absolutely continuous invariant measures with square integrable density function.

Tài liệu tham khảo

M. Ablowitz, D. Kaup, A. Newell and H. Segur,The inverse scattering transform: Fourier analysis for nonlinear systems, Studies in Applied Mathematics53 (1974), 249–315. A. I. Alonso and R. Obaya,Ergodic theory for bidimensional linear systems, Preprint, Univ. Valladolid, 1993. R. H. Cameron,Almost periodic properties of bounded solutions of linear differential equations with almost periodic coefficients, Journal of Mathematical Physics15 (1936), 73–81. W. Craig and B. Simon,Subharmonicity of the Lyaponov index, Duke Mathematical Journal50 (1983), 551–560. E. Coddington and N. Levinson,Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. P. Deift and B. Simon,The absolutely continuous spectrum in one dimension, Communications in Mathematical Physics90 (1983), 389–411. P. L. Duren,Theory of H p Spaces, Pure and Applied Math.38, Academic Press, New York, 1970. R. Ellis,Lectures on Topological Dynamics, Benjamin, Mass., 1969. H. Furstenberg,Strict ergodicity and transformations of the torus, American Journal of Mathematics85 (1961), 573–601. K. Ishii,Localization of eigenstates and transport phenomena in the one dimensional disordered system, Supplement of the Progress of Theoretical Physics53 (1973), 77–138. R. Johnson,Ergodic theory and linear differential equations, Journal of Differential Equations28 (1978), 23–34. R. Johnson,Analyticity of spectral subbundle, Journal of Differential Equations35 (1980), 366–387. R. Johnson,Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, Journal of Differential Equations61 (1986), 54–78. R. Johnson and R. Giachetti,The Floquet exponent for two-dimensional linear systems with bounded coefficients, Journal de Mathématiques Pures et Appliquées65 (1986), 93–117. R. Johnson and J. Moser,The rotation number for almost periodic potentials, Communications in Mathematical Physics84 (1982), 403–438. S. Kotani,One dimensional random Schrödinger operators and Herglotz functions, Preprint, Univ. Kyoto, 1986. S. Novo and R. Obaya,Bidimensional linear systems with singular dynamic, in preparation. R. Obaya and M. Paramio,Directional differentiability of the rotation number for the almost-periodic Schödinger equation, Duke Mathematical Journal66 (1992), 521–552. V. Osedelec,A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems, Transactions of the Moscow Mathematical Society19 (1968), 197–231. L. Pastur,Spectral properties of disordered systems in the one body approximation, Communications in Mathematical Physics75 (1980), 179–196. R. J. Sacker and G. R. Sell,A spectral theory for linear differential systems, Journal of Differential Equations27 (1978), 320–358. A. L. Sakhnovich,Spectral functions of a canonical system of order 2n, Mathematics of the USSR-Sbornik71 (1992), No. 2, 355–369. B. Simon,Kotani theory for one-dimensional stochastic Jacobi matrices, Communications in Mathematical Physics89 (1983), 227–234. V. Zacharov and A. Shabat,Exact theory of two-dimensional self-focusing and one-dimensional self-modulating waves in nonlinear media, Soviet Physics JETP34 (1972), 62–69.