Linear estimation of particle bulk parameters from multi-wavelength lidar measurements

Atmospheric Measurement Techniques - Tập 5 Số 5 - Trang 1135-1145
Igor Veselovskii1, Оleg Dubovik2, Alexei Kolgotin1, Mikhail Korenskiy1, David N. Whiteman3, K. R. Allakhverdiev4,5, F. Huseyinoglu5
1Physics Instrumentation Center, Moscow, Russia
2Laboratoire d'Optique Atmospherique, CNRS Universite de Lille 1, France
3NASA Goddard Space Flight Center, Greenbelt, USA
4Institute of Physics, Baku, Azerbaijan
5TÜBITAK, Marmara Research Center, Materials Institute, Turkey

Tóm tắt

Abstract. An algorithm for linear estimation of aerosol bulk properties such as particle volume, effective radius and complex refractive index from multiwavelength lidar measurements is presented. The approach uses the fact that the total aerosol concentration can well be approximated as a linear combination of aerosol characteristics measured by multi-wavelength lidar. Therefore, the aerosol concentration can be estimated from lidar measurements without the need to derive the size distribution, which entails more sophisticated procedures. The definition of the coefficients required for the linear estimates is based on an expansion of the particle size distribution in terms of the measurement kernels. Once the coefficients are established, the approach permits fast retrieval of aerosol bulk properties when compared with the full regularization technique. In addition, the straightforward estimation of bulk properties stabilizes the inversion making it more resistant to noise in the optical data. Numerical tests demonstrate that for data sets containing three aerosol backscattering and two extinction coefficients (so called 3β + 2α) the uncertainties in the retrieval of particle volume and surface area are below 45% when input data random uncertainties are below 20%. Moreover, using linear estimates allows reliable retrievals even when the number of input data is reduced. To evaluate the approach, the results obtained using this technique are compared with those based on the previously developed full inversion scheme that relies on the regularization procedure. Both techniques were applied to the data measured by multiwavelength lidar at NASA/GSFC. The results obtained with both methods using the same observations are in good agreement. At the same time, the high speed of the retrieval using linear estimates makes the method preferable for generating aerosol information from extended lidar observations. To demonstrate the efficiency of the method, an extended time series of observations acquired in Turkey in May 2010 was processed using the linear estimates technique permitting, for what we believe to be the first time, temporal-height distributions of particle parameters.

Từ khóa


Tài liệu tham khảo

Ansmann, A. and Müller, D.: Lidar and atmospheric aerosol particles, in: "Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere", edited by: Weitkamp, C., Springer, New York, 105–141, 2005.

Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W.: Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosols extinction, backscatter, and lidar ratio, Appl. Phys. B., 55, 18–28, 1992.

Ansmann, A., Tesche, M., Gro{ß}, S., Freudenthaler, V., Seifert, P., Hiebsch, A., Schmidt, J., Wandinger, U., Mattis, I., Müller, D., and Wiegner, M.: The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, L13810, https://doi.org/10.1029/2010GL043809, 2010.

Chaikovskii, A. P. and Shcherbakov, V. N.: Linear estimate of the parameters of the microstructure of an aerosol from spectral measurements of the characteristics of the scattered radiation, J. Appl. Spectrosc., 42, 564–568, https://doi.org/10.1007/BF00661408, 1985.

De Graaf, M., Donovan, D., and Apituley, A.: Aerosol microphysical properties from inversion of tropospheric optical Raman lidar data, Proceedings of ISTP 8, S06–O08, Delft, The Netherlands, 19–23 October 2009.

De Graaf, M., Donovan, D., and Apituley, A.: Saharan desert dust microphysical properties from principal component analysis inversion of Raman lidar data over Western Europe", Proceedings of 25th International Laser Radar Conference, 671–674, St.-Petersburg, 5–9 July 2010.

Donovan, D. and Carswell, A.: Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements, Appl. Opt., 36, 9406–9424, 1997.

Dubovik, O.: Optimization of Numerical Inversion in Photopolarimetric Remote Sensing", in: Photopolarimetry in Remote Sensing, edited by: Videen, G., Yatskiv, Y., and Mishchenko, M., Kluwer Academic Publishers, Dordrecht, The Netherlands, 65–106, 2004.

Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aero-sol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673–20696, 2000.

Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I.: Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590–608, 2002.

Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishenko, M., Yang, P., Eck, T. F., Volten, H., Munoz, O., Veihelmann, B., van der Zande, W. J., Leon, J.-F., Sorokin, M., and Slutsker, I.: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res., 111, D11208, https://doi.org/10.1029/2005JD006619, 2006.

Kolgotin, A. and Müller, D.: Theory of inversion with two-dimensional regularization: profiles of microphysical particle properties derived from multiwavelength lidar measurements, Appl. Opt., 47, 4472–4490, 2008.

Mishchenko, M. I., Hovenier, J. W., and Travis, L. D. (Eds.): Light Scattering by Nonspherical Particles, Academic Press, San-Diego, 2000.

Müller, D., Wandinger, U., and Ansmann, A.: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory, Appl. Opt. 38, 2346–2357, 1999.

Papayannis, A., Mamouri, R. E., Amiridis, V., Giannakaki, E., Veselovskii, I., Kokkalis, P., Tsaknakis, G., Balis, D., Kristiansen, N. I., Stohl, A., Korenskiy, M., Allakhverdiev, K., Huseyinoglu, M. F., and Baykara, T.: Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010, Atmos. Environ., 48, 56–65, https://doi.org/10.1016/j.atmosenv.2011.08.037, 2011.

Phillips, B. L.: A technique for numerical solution of certain integral equation of first kind, J. Assoc. Comp. Mach, 9, 84–97, 1962.

Thomason, L. W. and Osborn, M. T.: Lidar conservation parameters derived from SAGE II extinction measurements, Geophys. Res. Lett., 19, 1655–1658, 1992.

Twomey, S. (Ed.): Introduction to the Mathematics of Inversion in Remote Sensing and Linear Measurements, Elsevier, New York, 1977.

Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Wandinger, U., and Whiteman, D.: Inversion with regularization for the retrieval of tropospheric aerosol parameters from multi-wavelength lidar sounding, Appl. Opt., 41, 3685–3699, 2002.

Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Franke, K., and Whiteman, D. N.: Inversion of multi-wavelength Raman lidar data for retrieval of bimodal aerosol size distribution, Appl. Opt., 43, 1180–1195, 2004.

Veselovskii, I., Whiteman, D. N., Kolgotin, A., Andrews, E., and Korenskii, M.: Demonstration of aerosol property profiling by multi-wavelength lidar under varying relative humidity conditions, J. Atmos. Ocean. Technol., 26, 1543–1557, 2009.

Veselovskii, I., Dubovik, O., Kolgotin, A., Lapyonok, T., Di Girolamo, P., Summa, D., Whiteman, D. N., Mishchenko, M., and Tanré, D.: Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements, J. Geophys. Res., 115, D21203, https://doi.org/10.1029/2010JD014139, 2010.