Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion

Robert P. W. Duin1
1Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/34.277596

10.1016/S0031-3203(99)00142-9

10.1016/0031-3203(94)90145-7

10.1016/0031-3203(82)90068-1

loog, 2002, Non-Iterative Heteroscedastic Linear Dimension Reduction for Two-Class Data. From Fisher to Chernoff, Proc Fourth Int'l Workshop S+SSPR 2002, 508

10.1016/S0020-0255(76)90746-5

loog, 1999, Approximate Pairwise Accuracy Criteria for Multiclass Linear Dimension Reduction Generalisations of the Fisher Criterion

10.1016/0022-247X(89)90335-1

rice, 1995, Mathematical Statistics and Data Analysis

mclachlan, 1992, Discriminant Analysis and Statistical Pattern Recognition, 10.1002/0471725293

cover, 1991, Elements of Information Theory, 10.1002/0471200611

r�hl, 1998, Optimal vs. Classical Linear Dimension Reduction, Proc 22nd Ann GfKl Conf, 252

10.1016/0898-1221(77)90116-X

10.1109/34.935849

10.1002/ecja.4400670603

devijver, 1982, Pattern Recognition a Statistical Approach

rao, 1948, The Utilization of Multiple Measurements in Problems of Biological Classification, J Royal Statistical Soc Series B, 10, 159

murphy, 2004

10.1111/j.1469-1809.1936.tb02137.x

fukunaga, 1990, Introduction to statistical pattern recognition

10.1109/34.824819

hastie, 2001, The Elements of Statistical Learning, 10.1007/978-0-387-21606-5

liu, 2003, Optimal Linear Representations of Images for Object Recognition, Proc 2003 Conf Computer Vision and Pattern Recognition, 229

kumar, 1996, Generalization of Linear Discriminant Analysis in a Maximum Likelihood Framework, Proc Joint Meeting of the Am Statistical Assoc