Linear congruence relations for 2-adic L-series at integers
Tóm tắt
In the paper we find a further generalization of congruences of the K. Hardy and K. S. Williams [5] type which seems to be a full generalization of congruences of G. Gras [4]. Moreover we extend results of [5], [7], [8], [9] and in part of [6]. We apply ideas and methods of [2], [7] and [9].
Tài liệu tham khảo
Carlitz, L.: Arithmetic properties of generalized Bernoulli numbers, J. Reine Angew. Math. 202 (1959) 174-182.
Coleman, R. F.: Dilogarithms, Regulators and p-adic L-functions, Invent. Math.69 (1982) 171-208.
Frobenius, G.: Über die Bernoullischen Zahlen und die Eulerschen Polynome, Sitzungsber. Preuss. Akad.Wissenschaften2 (1910) 809-847, or MathematischeWerke III, Berlin, Heidelberg, New York, 1968, 440-478.
Gras, G.: Relations congruentielles linéaires entre nombres de classes de corps quadratiques, Acta Arith.52 (1989) 147-162.
Hardy, K. and Williams, K. S.: A congruence relating the class numbers of complex quadratic fields, Acta Arith.47 (1986) 263-276.
Szmidt, J., Urbanowicz, J. and Zagier, D.: Congruences among generalized Bernoulli numbers, Acta Arith.71 (1995) 273-278.
Uehara, T.: On linear congruences between class numbers of quadratic fields, J. Number Theory34 (1990) 362-392.
Urbanowicz, J.: Connections between B 2;χ for even quadratic Dirichlet characters χ and class numbers of appropriate imaginary quadratic fields, II, Composito Math.75 (1990) 271-285, Corrigendum: ibidem75 (1991) 119-125.
Urbanowicz, J. and Wójcik, A.: On linear congruence relations related to 2-adic dilogarithms, Publ. Math. Fac. Sci. Besançon, Théorie des Nombres, Années 1995/1996 (to appear).
Washington, L. C.: Introduction to cyclotomic fields, Springer Verlag, New York, 1982.