Linear confinement of a scalar particle in a Gödel-type spacetime
Tóm tắt
Based on the studies of confinement of quarks, we introduce a linear scalar potential into the relativistic quantum dynamics of a scalar particle. Then we analyze the linear confinement of a relativistic scalar particle in a Gödel-type spacetime in the presence of a topological defect. We consider a Gödel-type spacetime associated with null curvature, i.e., the Som–Raychaudhuri spacetime, which is characterized by the presence of vorticity in the spacetime. Then we search for analytical solutions to the Klein–Gordon equation and analyze the influence of the topology of the cosmic string and the vorticity on the relativistic energy levels.
Tài liệu tham khảo
K. Gödel, Rev. Mod. Phys. 21, 447 (1949)
H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers, E. Herlt, Exact solutions of Einstein field equations (Cambridge University Press, Cambridge, 2003)
S. Hawking, Phys. Rev. D 46, 603 (1992)
M. Rebouas, J. Tiomno, Phys. Rev. D 28, 1251 (1983)
M. Rebouças, M. Aman, A.F.F. Teixeira, J. Math. Phys. 27, 1370 (1985)
M.O. Galvão, M. Rebouças, A.F.F. Teixeira, W.M. Silva Jr., J. Math. Phys. 29, 1127 (1988)
B.D. Figueiredo, I.D. Soares, J. Tiomno, Class. Quantum Gravity 9, 1593 (1992)
N. Drukker, B. Fiol, J. Simón, JCAP 0410, 012 (2004)
S. Das, J. Gegenberg, Gen. Relat. Grav. 40, 2115 (2008)
J. Carvalho, A.M. de M. Carvalho, E. Cavalcante, C. Furtado, Eur. Phys. J. C 76, 365 (2016)
M. Aryal, L.H. Ford, A. Vilenkin, Phys. Rev. D 34, 2263 (1986)
M.G. Germano, V.B. Bezerra, E.R.Bezerra de Mello, Class. Quantum Grav. 13, 2663 (1996)
D.V. Gal’tsov, E. Masar, Class. Quantum Grav. 6, 1313 (1989)
E.R.Bezerra de Mello, A.A. Saharian, J. Phys. A Math. Theor. 45, 115402 (2012)
S.G. Fernandes, G. de A. Marques, V.B. Bezerra, Class. Quantum Grav. 23, 7063 (2006)
J. Carvalho, A.M. de M. Carvalho, C. Furtado, Eur. Phys. J. C 74, 2935 (2014)
G.Q. Garcia et al., Eur. Phys. J. Plus 132, 123 (2017)
M.M. Som, A.K. Raychaudhuri, Proc. R. Soc. A 4, 1633 (1987)
G.T. Horowitz, A.A. Tseytlin, Phys. Rev. D 51, 2896 (1995)
G. Russo, A.A. Tseytlin, Nucl. Phys. B 448, 293 (1995)
J.G. Russo, A.A. Tseytlin, Nucl. Phys. B 454, 164 (1995)
C.L. Chrichfield, J. Math. Phys. 17, 261 (1976)
E.J. Austin, Mol. Phys. 40, 893 (1980)
E.R. Vrscay, Phys. Rev. A 31, 2054 (1985)
K. Killingbeck, Rep. Prog. Phys. 40, 963 (1977)
K. Killingbeck, Phys. Lett. A 65, 87 (1978)
R.P. Saxena, V.S. Varma, J. Phys. A Math. Gen. 15, L149 (1982)
E. Castro, P. Martín, J. Phys. A Math. Gen. 33, 5321 (2000)
I.C. Fonseca, K. Bakke, Proc. R. Soc. A 471, 20150362 (2015)
G. Plante, A.F. Antippa, J. Math. Phys. 46, 062108 (2005)
J.H. Noble, U.D. Jentschura, Int. J. Mod. Phys. A 30, 1550002 (2015)
M.L. Glasser, N. Shawagfeh, J. Math. Phys. 25, 2533 (1984)
H. Tezuka, AIP Adv. 3, 082135 (2013)
J.F. Gunion, L.F. Li, Phys. Rev. D 12, 3583 (1975)
P. Ferreira Leal, Phys. Rev. D 38, 2648 (1988)
F. Domínguez-Adame, M.A. González, Europhys. Lett. 13, 193 (1990)
R.L.L. Vitória, K. Bakke, Eur. Phys. J. Plus 131, 36 (2016)
R.L.L. Vitória, C. Furtado, K. Bakke, Ann. Phys. (NY) 370, 128 (2016)
R.L.L. Vitória, K. Bakke, Gen. Relat. Grav. 48, 161 (2016)
W. Greiner, Relativistic quantum mechanics: wave equations, 3rd edn. (Springer, Berlin, 2000)
A. Ronveaux, Heun’s differential equations (Oxford University Press, Oxford, 1995)
E.R. Figueiredo Medeiros, E.R.Bezerra de Mello, Eur. Phys. J. C 72, 2051 (2012)
L.D. Landau, E.M. Lifshitz, Quantum mechanics, the nonrelativistic theory, 3rd edn. (Pergamon, Oxford, 1977)
C. Furtado, B.C.G. da Cunha, F. Moraes, V.B. Bezerra, E.R.Bezerra de Mello, V.B. Bezerra, Phys. Lett. A. 21, 90 (1994)
C. Bonati, M. D’Elia, A. Rucci, Phys. Rev. D 92, 054014 (2015)
E. Eichten, K. Gottfried, T. Kinoshita, J.B. Kogut, K.D. Lane, T.M. Yan, Phys. Rev. Lett. 34, 369 (1975)