Linear and nonlinear liftings of states of quantum systems
Tóm tắt
In this paper, we study the representability of an arbitrary quantum state ρ ∈ Σ(H) as the reduction of a vector state r ∈ Σ(H) of the extended system. We extend the operation of lifting from the set of states Σ
n
(H) to the set of generalized states Σ(H). A method of constructing the Hilbert space H and the affine linear lifting Σ(H) → Σ(H) is studied. The construction of individual expansion H
ρ of the space H for which the state ρ is a reduction of a vector state H
ρ is of special interest.
Tài liệu tham khảo
J. Kupsh, O. G. Smolyanov, and N. A. Sidorova, “States of Quantum Systems and Their Liftings,” J. Math. Phys. 42(3), 1026–1037 (2001).
L. Accardi, Y.G. Lu, and I. G. Volovich, Quantum Theory and Its Stochastic Limit (Springer, Berlin, 2002).
R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin-New York, 1987).
V. I. Averbukh, O. G. Smolyanov, and S. V. Fomin, “Generalized Functions and Differential Equations in Linear Spaces. II. Differential Operators and Their Fourier Transforms,” Tr. Mosk. Mat. Obs. 27, 247–262 (1972) [in Russian].
G. G. Amosov and V. Zh. Sakbaev, “Stochastic Properties of Dynamics of Quantum Systems,” Trudy SamGU 8(1), 479–494 (2008).
N. Dunford and J. T. Schwartz, Linear Operators, Vol I (Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958; Izdat. Inostran. Lit., Moscow, 1962; URSS, Moscow, 2004).
V. I. Bogachev, Measure Theory, Vol. 2 (NIC Regular and Chaotic Dynamics, Moscow-Izhevsk, 2006; Berlin: Springer, 2007).
V. I. Bogachev and O. G. Smolyanov, Real and Functional Analysis (URSS, Moscow, 2011) [in Russian].
N. N. Bogoljubov [Bogolyubov], On Some Statistical Methods in Mathematical Physics (Akad. Nauk Ukrain. SSR, Lvov, 1945) [in Russian].
O. Bratteli and D. W. Robinson, Operator Algebras and Quantum-Statistical Mechanics, Vols. I and II (Springer-Verlag, New York-Heidelberg, 1979, New York-Berlin, 1981; Moscow, Mir, 1982).
A. Connes, “Classification of Injective Factors. Cases II1, II∞, IIIλ, λ ≠ 1,” Ann. Math. (2) 104(1), 73–115 (1976).
A. S. Holevo [Kholevo], Introduction to Quantum Information Theory (MTsNMO, Moscow, 2002; Quantum Systems, Channels, Information, Berlin, de Gruyter, 2013 (to appear)).
A. S. Holevo [Kholevo], Probabilistic and Statistical Aspects of Quantum Theory (Moscow-Izhevsk, IKI, 2003; Edizioni della Normale, Pisa, 2011).
L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Fizmatlit, Moscow, 2003; Pergamon Press, Oxford-Elmsford, N.Y., 1980).
V. Zh. Sakbaev, “On the Set of Quantum States and Its Averaged Dynamic Transformations,” (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. (10), 48–58 (2011) [Russian Math. (Iz. VUZ) 55 (10), 41–50 (2011)].
V. Zh. Sakbaev, “On the Variational Description of the Trajectories of Averaged Quantum Dynamical Maps, p-Adic Numbers,” Ultrametric Analysis and Applications 4(2), 120–134 (2012).
M.D. Srinivas, “Collapse Postulate for Observables with Continuous Spectra,” Comm. Math. Phys. 71(2), 131–158 (1980).
V. S. Varadarajan, “Measures on Topological Spaces,” Mat. Sb. (N.S.) 55(97) (1), 35–100 (1961) [Amer. Math. Soc. Transl. ser. 2 48, 161–228 (1965); The Selected Works of V. S. Varadarajan (AMS, Providence, RI; International Press, Cambridge, MA, 1999) pp. 11–78].