Tóm tắt
Một số tình huống hồi quy trong sinh học cá và ngư nghiệp được xem xét, trong đó cả hai biến đều chịu lỗi đo lường, hoặc biến đổi nội tại, hoặc cả hai. Đối với hầu hết các tình huống này, một đường hồi quy chức năng thích hợp hơn so với các hồi quy dự đoán thông thường thường được sử dụng, do đó nhiều ước tính hiện nay đang sử dụng có một mức độ nào đó bị lệch. Ví dụ bao gồm (1) ước tính số mũ trong mối quan hệ trọng lượng/chiều dài, nơi mà hầu như tất cả các giá trị công bố là hơi nhỏ; và (2) ước tính hồi quy của logarit tỷ lệ trao đổi chất trên trọng lượng cơ thể log của cá, nơi mà con số trung bình tốt nhất hóa ra là 0,85 thay vì 0,80. Trong tình huống rất phổ biến nơi phân phối của các biến không phải là chuẩn và không có kết thúc mở, hồi quy chức năng là phù hợp nhất thậm chí cho cả mục đích dự đoán. Hai cách để ước tính hồi quy chức năng là (1) từ trung bình số học của các đoạn trong phân phối, khi tính toán đối xứng; và (2) từ trung bình hình học của một hồi quy dự đoán và nghịch đảo của hồi quy kia. Hồi quy GM đưa ra một ước tính chính xác hơn khi nó có thể được áp dụng; nó phù hợp trong mọi tình huống mà biến động chủ yếu là nội tại trong vật liệu (ít lỗi đo lường), hoặc nơi mà phương sai đo lường xấp xỉ tỷ lệ với tổng phương sai của mỗi biến; và nó là ước tính tốt nhất có sẵn cho chuỗi ngắn với biến động vừa hoặc lớn ngay cả khi không có điều kiện nào trong số này áp dụng. Khi lỗi trong X chỉ phát sinh từ quá trình đo lường, hồi quy dự đoán của Y trên X cũng là hồi quy chức năng nếu các quan sát của X không được thực hiện ngẫu nhiên nhưng có giá trị được thiết lập trước, như thường thấy trong công việc thực nghiệm. Các cách sử dụng của các hồi quy khác nhau được tóm tắt trong Bảng 8.