Linear-Quadratic $$N$$ N -Person and Mean-Field Games: Infinite Horizon Games with Discounted Cost and Singular Limits

Dynamic Games and Applications - Tập 5 Số 3 - Trang 397-419 - 2015
Fabio S. Priuli1
1Istituto per le Applicazioni del Calcolo “M. Picone”, C.N.R., Rome, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Achdou Y, Capuzzo-Dolcetta I (2010) Mean field games: numerical methods. SIAM J Numer Anal 48(3):1136–1162

Bardi M (2012) Explicit solutions of some linear-quadratic mean field games. Netw Heterog Media 7:243–261

Bardi M, Priuli FS (2014) Linear-quadratic $$N$$ N -person and mean-field games with ergodic cost. SIAM J Control Optim 52(5):3022–3052

Basar T, Olsder GJ (1995) Dynamic noncooperative game theory, 2nd edn. Academic Press, London

Bensoussan A, Frehse J (1995) Ergodic Bellman systems for stochastic games in arbitrary dimension. Proc R Soc London Ser A 449:65–77

Bensoussan A, Frehse J (2002) Regularity results for nonlinear elliptic systems and applications. Springer, Berlin

Bensoussan A, Sung KCJ, Yam SCP, Yung SP (2014) Linear-quadratic mean field games. arXiv:1404.5741

Engwerda JC (2005) LQ dynamic optimization and differential games. John Wiley, Hoboken, NJ

Gomes DA, Mohr J, Souza RR (2010) Discrete time, finite state space mean field games. J Math Pures Appl (9) 93(3):308–328

Guéant O, Lasry J-M, Lions P-L (2011) Mean field games and applications. In Carmona RA et al (eds) Paris-Princeton Lectures on mathematical finance 2010. Springer, Berlin, pp 205–266

Huang M, Caines PE, Malhamé RP (2003) Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In Proceedings of the 42nd IEEE conference on decision and control, Maui, pp 98–103

Huang M, Caines PE, Malhamé RP (2006) Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun Inf Syst 6(3):221–251

Huang M, Caines PE, Malhamé RP (2007) Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized $$\epsilon $$ ϵ -Nash equilibria. IEEE Trans Automat Control 52(9):1560–1571

Kolokoltsov VN, Troeva M, Yang W (2014) On the rate of convergence for the mean-field approximation of controlled diffusions with large number of players. Dyn Games Appl 4(2):208-230

Lachapelle A, Wolfram M-T (2011) On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transport Res B 45(10):1572–1589

Lancaster P, Rodman L (1995) Algebraic Riccati equations. Oxford University Press, New York

Lasry J-M, Lions P-L (2006) Jeux à champ moyen. I. Le cas stationnaire. CR Acad Sci Paris 343:619–625

Lasry J-M, Lions P-L (2006) Jeux à champ moyen. II. Horizon fini et contrôle optimal. CR Acad Sci Paris 343:679–684

Lasry J-M, Lions P-L (2007) Mean field games. Jpn J Math 2:229–260

Li T, Zhang J-F (2008) Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans Automat Control 53(7):1643–1660

Nourian M, Caines PE, Malhamé RP, Huang M (2013) Nash, social and centralized solutions to consensus problems via mean field control theory. IEEE Trans Automat Control 58(3):639–653

Priuli FS (2014) First order mean field games in pedestrian dynamics. arXiv:1402.7296

Serre D (2002) Matrices: theory and applications, 2nd edn. Springer, New York