Limits of generalized state space systems under proportional and derivative feedback

Mathematics of Control, Signals and Systems - Tập 10 - Trang 97-124 - 1997
D. Hinrichsen1, J. O'Halloran2
1Institut für Dynamische Systeme, Universität Bremen, Bremen, Germany;
2Department of Mathematical Sciences, Portland State University, Portland, USA

Tóm tắt

In this paper we study the high-gain feedback classification problem for generalized state space systems. We solve this problem for proportional and derivative feedback transformations of regularizable systems, i.e., we give necessary and sufficient conditions for a regularizable system to be a limit of a given system under high-gain proportional and derivative feedback. We also derive a new complete set of invariants for proportional feedback equivalence and specify a set of necessary conditions for a system to be the limit of another system under these feedback transformations. The necessary conditions are sufficient for arbitrary state space systems and for controllable singular systems.

Tài liệu tham khảo

P. Brunovsky. A classification of linear controllable systems.Kybernetika, 3:173–187, 1970. E. R. Gantmacher.The Theory of Matrices, Volumes 1 and 2. Chelsea, New York, 1959. H. Glüsing-Lüerßen. A feedback canonical form for singular systems.International Journal of Control, 52:347–376, 1990. H. Glüsing-Lüerßen. Gruppenaktionen in der Theorie singulärer Systeme. Ph.D. thesis, Institut für Dynamische Systeme, Universität Bremen, 1991. H. Glüsing-Lüerßen and D. Hinrichsen. The degeneration of reachable singular systems under feedback-transformations.Kybernetika, 30:387–391, 1994. M. Hazewinkel and C. F. Martin. Representations of the symmetric group, the specialization order, systems and Grassmann manifolds.L'Enseignement Mathématique, 29:53–87, 1983. D. Hinrichsen and J. O'Halloran. A complete characterization of orbit closures of singular systems under restricted system equivalence.SIAM Journal on Control and Optimization, 28:602–623, 1990. D. Hinrichsen and J. O'Halloran. Orbit closure of singular matrix pencils.Journal of Pure and Applied Algebra, 81:117–137, 1992. D. Hinrichsen and J. O'Halloran. A note on the orbit closure problem for the action of the generalized feedback group. InSystems and Networks: Mathematical Theory and Applications, Volume II, U. Helmke, R. Mennicken, and J. Saurer, eds. Akademie Verlag, pages 221–224, 1994. D. Hinrichsen and J. O'Halloran. A pencil approach to high gain feedback and generalized state space systems.Kybernetika, 31:109–139, 1995. M. Kuijper.First-Order Representations of Linear Systems. Birkhäuser, Basel, 1994. J. J. Loiseau, K. Özçaldiran, M. Malabre, and N. Karcanias. Feedback canonical forms of singular systems.Kybernetika, 27:289–305, 1991. K. Özcaldiran and F. L. Lewis. On the regularizability of singular systems.IEEE Transactions on Automatic Control, 35:1156–1160, 1990. M. S. Ravi and J. Rosenthal. A smooth compactification of the space of transfer functions with fixed McMillan degree.Acta Applicandae Mathematicae, 34:329–352, 1994. M. S. Ravi and J. Rosenthal. A general realization theory for higher order linear differential equations.Systems & Control Letters, 25:351–360, 1995. H. H. Rosenbrock. Structural properties of linear dynamical systems.International Journal of Control, 20:177–189, 1974. M. A. Shayman. Homogeneous indices, feedback invariants, and control structure theorem for generalized systems.SIAM Journal on Control and Optimization, 26:387–400, 1988. J. C. Willems. Paradigms and puzzles in the theory of dynamical systems.IEEE Transactions on Automatic Control, 36:259–294, 1991. Z. Zhou, M. A. Shayman, and T. J. Tarn. Singular systems: A new approach in the time domain.IEEE Transactions on Automatic Control, 32:42–50, 1987.