Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giới hạn của các chuẩn Besov
Tóm tắt
Các không gian Besov $${{\mathbf B}^s_{p,q} ({\mathbb R}^n)}$$ với s > 0 có thể được chuẩn hóa dựa trên các độ chênh lệch $${\Delta^m_h f}$$ và các mô-đun liên quan đến độ mịn ω m (f, t) p , trong đó $${0 < s < m \in {\mathbb N}}$$. Bài báo này xem xét câu hỏi điều gì sẽ xảy ra nếu $${s {\uparrow} m}$$ và kết quả này liên quan tới các không gian Sobolev $${{\mathbf W}^m_p ({\mathbb R}^n)}$$.
Từ khóa
Tài liệu tham khảo
Bojarski B., Hajłasz P.: Pointwise inequalities for Sobolev functions and some applications. Studia Math. 106, 77–92 (1993)
Bourgain J., Brezis H., Mironescu P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds) Optimal Control and Partial Differential Equations, pp. 439–466. IOS Press, Amsterdam (2001)
DeVore R., Lorentz G.G.: Constructive Approximation. Springer-Verlag, Berlin (1993)
Hajłasz P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)
D. D. Haroske and H. Triebel, Embeddings of function spaces: A criterion in terms of differences, Complex Var. Elliptic Equ., to appear.
Karadzhov G.E., Milman M., Xiao J.: Limits of higher-order Besov spaces and sharp reiteration theorems. J. Funct. Anal. 221, 323–339 (2005)
Kolyada V.I., Lerner A.K.: On limiting embeddings of Besov spaces. Studia Math. 171, 1–13 (2005)
Maz’ya V., Shaposhnikova T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, 230–238 (2002)
Milman M.: Notes on limits of Sobolev spaces and the continuity of interpolation scales. Trans. Amer. Math. Soc. 357, 3425–3442 (2005)
S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Izdat. Leningrad. Gos. Univ., Leningrad, 1950 (in Russian); English translation: Amer. Math. Soc., Providence, 1991.
Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970)
Triebel H.: Theory of Function Spaces. Birkhäuser, Basel (1983)
Triebel H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)
Triebel H.: Function Spaces and Wavelets on Domains, European Math Soc. Publishing House, Zürich (2008)
Triebel H.: Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration. European Math. Soc. Publishing House, Zürich (2010)
Triebel H.: Sobolev-Besov spaces of measurable functions. Studia Math. 201, 69–86 (2010)
Ziemer W.P.: Weakly Differentiable Functions. Springer-Verlag, New York (1989)