Limiting Bourgain–Brezis estimates for systems of linear differential equations: Theme and variations

Springer Science and Business Media LLC - Tập 15 - Trang 273-297 - 2014
Jean Van Schaftingen1
1Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain, Louvain-la-Neuve, Belgium

Tóm tắt

J. Bourgain and H. Brezis have obtained in 2002 some new and surprising estimates for systems of linear differential equations, dealing with the endpoint case L 1 of singular integral estimates and the critical Sobolev space $${W^{1,n}(\mathbb{R}^n)}$$ . This paper presents an overview of the results, further developments over the last ten years and challenging open problems.

Tài liệu tham khảo

Abatangelo L., Terracini S.: Solutions to nonlinear Schrödinger equations with singular electromagnetic potential and critical exponent. J. Fixed Point Theory Appl. 10, 147–180 (2011) R. A. Adams and J. J. F. Fournier, Sobolev Spaces. 2nd ed., Pure and Applied Mathematics (Amsterdam) 140, Elsevier/Academic Press, Amsterdam, 2003. S. Agmon, The L p approach to the Dirichlet problem. I. Regularity theorems. Ann. Sc. Norm. Super. Pisa (3) 3 (1959), 405–448. S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies 2, Van Nostrand, Princeton, NJ, 1965. Alvino A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Un. Mat. Ital. A 5(14), 148–156 (1977) L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139 (1997), 201–238. C. Amrouche and H. H. Nguyen, New estimates for the div, curl, grad operators and elliptic problems with L 1-data in the half-space. Appl. Math. Lett. 24 (2011), 697–702. C. Amrouche and H. H. Nguyen, New estimates for the div-curl-grad operators and elliptic problems with L 1-data in the whole space and in the half-space. J. Differential Equations 250 (2011), 3150–3195. C. Amrouche and H. H. Nguyen, Elliptic problems with L 1-data in the halfspace. Discrete Contin. Dyn. Syst. Ser. S 5 (2012), 369–397. A. Baldi and B. Franchi, Sharp a priori estimates for div-curl systems in Heisenberg groups. J. Funct. Anal. 265 (2013), 2388–2419. F. Bethuel, G. Orlandi and D. Smets, Approximations with vorticity bounds for the Ginzburg-Landau functional. Commun. Contemp. Math. 6 (2004), 803–832. G. Bourdaud, Calcul fonctionnel dans certains espaces de Lizorkin–Triebel. Arch. Math. (Basel) 64 (1995), 42–47. J. Bourgain and H. Brezis, Sur l’équation div u = f. C. R. Math. Acad. Sci. Paris 334 (2002), 973–976. J. Bourgain and H. Brezis, On the equation div Y = f and application to control of phases. J. Amer. Math. Soc. 16 (2003), 393–426. J. Bourgain and H. Brezis, New estimates for the Laplacian, the div-curl, and related Hodge systems. C. R. Math. Acad. Sci. Paris 338 (2004), 539–543. J. Bourgain and H. Brezis, New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. (JEMS) 9 (2007), 277–315. J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces. J. Anal. Math. 80 (2000), 37–86. J. Bourgain, H. Brezis and P. Mironescu, H 1/2 maps with values into the circle: Minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes ´Etudes Sci. 99 (2004), 1–115. P. Bousquet and P. Mironescu, An elementary proof of an inequality of Maz’ya involving L 1 vector fields. In: Nonlinear Elliptic Partial Differential Equations, Contemp. Math. 540, Amer. Math. Soc., Providence, RI, 2011, 59–63. P. Bousquet, P. Mironescu and E. Russ, A limiting case for the divergence equation. Math. Z. 274 (2013), 427–460. P. Bousquet and J. Van Schaftingen, Hardy-Sobolev inequalities for vector fields and canceling linear differential operators. To appear in Indiana Univ. Math. J. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York, 2011. H. Brezis and H.-M. Nguyen, The Jacobian determinant revisited. Invent. Math. 185 (2011), 17–54. H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1 (1995), 197–263. H. Brezis and J. Van Schaftingen, Boundary estimates for elliptic systems with L 1-data. Calc. Var. Partial Differential Equations 30 (2007), 369–388. H. Brezis and J. Van Schaftingen, Circulation integrals and critical Sobolev spaces: Problems of optimal constants. In: Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, Proc. Sympos. Pure Math. 79, Amer. Math. Soc., Providence, RI, 2008, 33–47. M. Briane and J. Casado-Díaz, Estimate of the pressure when its gradient is the divergence of a measure. Applications. ESAIM Control Optim. Calc. Var. 17 (2011), 1066–1087. M. Briane and J. Casado-Díaz, Homogenization of stiff plates and twodimensional high-viscosity Stokes equations. Arch. Ration. Mech. Anal. 205 (2012), 753–794. M. Briane, J. Casado-Díaz and F. Murat, The div-curl lemma “trente ans après”: An extension and an application to the G-convergence of unbounded monotone operators. J. Math. Pures Appl. (9) 91 (2009), 476–494. A. P. Calderón and A. Zygmund, On the existence of certain singular integrals. Acta Math. 88 (1952), 85–139. H. Castro and H. Wang A Hardy type inequality for W m,1(0, 1) functions. Calc. Var. Partial Differential Equations 39 (2010), 525–531. H. Castro, J. Dávila and H. Wang, A Hardy type inequality for \({W_{0}^{2,1}(\Omega)}\) functions. C. R. Math. Acad. Sci. Paris 349 (2011), 765–767. H. Castro, J. Dávila and H. Wang, A Hardy type inequality for \({W_{0}^{m,1}(\Omega)}\) functions. J. Eur. Math. Soc. (JEMS) 15 (2013), 145–155. S. Chanillo and J. Van Schaftingen, Subelliptic Bourgain-Brezis estimates on groups. Math. Res. Lett. 16 (2009), 487–501. S. Chanillo and P.-L. Yung, An improved Strichartz estimate for systems with divergence free data. Comm. Partial Differential Equations 37 (2012), 225–233. A. Cohen, W. Dahmen, I. Daubechies and R. DeVore, Harmonic analysis of the space BV. Rev. Mat. Iberoam. 19 (2003), 235–263. R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72 (1993), 247–286. S. Conti, D. Faraco and F. Maggi, A new approach to counterexamples to L 1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions. Arch. Ration. Mech. Anal. 175 (2005), 287–300. T. De Pauw, L. Moonens and W. F. Pfeffer, Charges in middle dimensions. J. Math. Pures Appl. (9) 92 (2009), 86–112. T. De Pauw and W. F. Pfeffer, Distributions for which div v = F has a continuous solution. Comm. Pure Appl. Math. 61 (2008), 230–260. L. Ehrenpreis, A fundamental principle for systems of linear differential equations with constant coefficients, and some of its applications. In: Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem, 1961, 161–174. C. Fefferman and E. M. Stein, H p spaces of several variables. Acta Math. 129 (1972), 137–193. G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13 (1975), 161–207. G. B. Folland and E. M. Stein, Estimates for the \({\bar{\partial}_b}\) complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27 (1974), 429–522. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups. Mathematical Notes 28, Princeton University Press, Princeton, NJ, 1982. E. Gagliardo, Proprietà à di alcune classi di funzioni in più variabili. Ricerche Mat. 7 (1958), 102–137. A. Garroni, G. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. (JEMS) 12 (2010), 1231–1266. A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8 (1953), 1–79. L. Hörmander, Differentiability properties of solutions of systems of differential equations. Ark. Mat. 3 (1958), 527–535. L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators. Grundlehren Math. Wiss. 274, Springer, Berlin, 1985. J. Hounie and T. Picon, Local Gagliardo-Nirenberg estimates for elliptic systems of vector fields. Math. Res. Lett. 18 (2011), 791–804. T. Isobe, Topological and analytical properties of Sobolev bundles. II. Higher dimensional cases. Rev. Mat. Iberoam. 26 (2010), 729–798. T. Iwaniec, Integrability Theory, and the Jacobians. Lecture Notes, Universität Bonn, 1995. D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53 (1986), 503–523. G. A. Kaljabin, Descriptions of functions from classes of Besov-Lizorkin- Triebel type. In: Studies in the Theory of Differentiable Functions of Several Variables and Its Applications, VIII, Tr. Mat. Inst. Steklov. 156, 1980, 82–109 (in Russian). B. Kirchheim and J. Kristensen, Automatic convexity of rank-1 convex functions. C. R. Math. Acad. Sci. Paris 349 (2011), 407–409. B. Kirchheim and J. Kristensen, On rank one convex functions that are homogeneous of degree one. In preparation. V. I. Kolyada, On the embedding of Sobolev spaces. Mat. Zametki 54 (1993), 48–71 (in Russian); English transl.: Math. Notes 54 (1993), 908–922. V. I. Kolyada, On Fubini type property in Lorentz spaces. In: Recent Advances in Harmonic Analysis and Applications, Springer Proc. Math. Stat. 25, Springer, New York, 2013, 171–179. H. Komatsu, Resolutions by hyperfunctions of sheaves of solutions of differential equations with constant coefficients. Math. Ann. 176 (1968), 77–86. L. Lanzani, Higher order analogues of exterior derivative. Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013), 389–398. L. Lanzani and A. S. Raich, On div-curl for higher order. In: Advances in Analysis: The Legacy of Elias M. Stein, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 2014, 245–272. L. Lanzani and E. M. Stein, A note on div curl inequalities. Math. Res. Lett. 12 (2005), 57–61. E. H. Lieb and M. Loss Analysis. 2nd ed., Grad. Stud. Math. 14, Amer. Math. Soc., Providence, RI, 2001. J.-L. Lions and E. Magenes, Problemi ai limiti non omogenei. III. Ann. Sc. Norm. Super. Pisa (3) 15 (1961), 41–103. Ya. B. Lopatinskĭ, On a method of reducing boundary problems for a system of differential equations of elliptic type to regular integral equations. Ukrain. Mat. ž. 5 (1953), 123–151 (in Russian); English transl.: Thirteen Papers on Differential Equations, Amer. Math. Soc. Transl. Ser. 2 89 (1970), 149–183. V. Maz’ya, Bourgain–Brezis type inequality with explicit constants. In: Interpolation Theory and Applications, Contemp. Math. 445, Amer. Math. Soc., Providence, RI, 2007, 247–252. V. Maz’ya, Estimates for differential operators of vector analysis involving L 1- norm. J. Eur. Math. Soc. (JEMS) 12 (2010), 221–240. V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations. 2nd ed., Grundlehren Math. Wiss. 342, Springer, Heidelberg, 2011. V. Maz’ya and T. Shaposhnikova, A collection of sharp dilation invariant integral inequalities for differentiable functions. In: Sobolev Spaces in Mathematics I, Int. Math. Ser. (N. Y.) 8, Springer, New York, 2009, 223–247. P. Mironescu, On some inequalities of Bourgain, Brezis, Maz’ya, and Shaposhnikova related to L 1 vector fields. C. R. Math. Acad. Sci. Paris 348 (2010), 513–515. I. Mitrea and M. Mitrea, A remark on the regularity of the div-curl system. Proc. Amer. Math. Soc. 137 (2009), 1729–1733. F. Murat, Compacité par compensation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 5 (1978), 489–507. L. Nirenberg, On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa (3) 13 (1959), 115–162. D. Ornstein, A non-equality for differential operators in the L 1 norm. Arch. Ration. Mech. Anal. 11 (1962), 40–49. W. F. Pfeffer, The Divergence Theorem and Sets of Finite Perimeter. Pure and Applied Mathematics, CRC Press, Boca Raton, FL, 2012. L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups. Acta Math. 137 (1976), 247–320. M. Rumin, Formes différentielles sur les variétés de contact. J. Differential Geom. 39 (1994), 281–330. M. Rumin, Differential geometry on C-C spaces and application to the Novikov- Shubin numbers of nilpotent Lie groups. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 985–990. Rumin M.: Sub-Riemannian limit of the differential form spectrum of contact manifolds. Geom. Funct. Anal. 10, 407–452 (2000) M. Rumin, Around heat decay on forms and relations of nilpotent Lie groups. In: Sémin. Théor. Spectr. Géom. 19, Univ. Grenoble I, Saint, 2001, 123–164. T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Ser. Nonlinear Anal. Appl. 3, de Gruyter, Berlin, 1996. B. J. Schmitt and M. Winkler, On embeddings between BV and \({\dot{W}^{s,p}}\) . Preprint no. 6, Lehrstuhl I für Mathematik, RWTH Aachen, 2000. G. Schwarz, Hodge Decomposition—A Method for Solving Boundary Value Problems. Lecture Notes in Math. 1607, Springer, Berlin, 1995. S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows. Algebra i Analiz 5 (1993), 206–238 (in Russain); English transl.: St. Petersburg Math. J. 5 (1994), 841–867. V. A. Solonnikov, Overdetermined elliptic boundary value problems. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 21 (1971), 112–158 (in Russian); English transl.: J. Sov. Math. 1 (1973), 477–512. V. A. Solonnikov, Inequalities for functions of the classes \({{{\dot{W}^{\vec{m}}_{{p}}}{(\mathbb{R}^n)}}}\) . Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 27 (1972), 194–210 (in Russian); English transl.: J. Sov. Math. 3 (1975), 549–564. D. C. Spencer, Overdetermined systems of linear partial differential equations. Bull. Amer. Math. Soc. (N.S.) 75 (1969), 179–239. E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser. 30, Princeton University Press, Princeton, NJ, 1970. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Math. Ser. 43, Princeton University Press, Princeton, NJ, 1993. M. J. Strauss, Variations of Korn’s and Sobolev’s equalities. In: Partial Differential equations (Univ. California, Berkeley, Calif., 1971), Proc. Sympos. Pure Math. 23, Amer. Math. Soc., Providence, RI, 1973, 207–214. R. S. Strichartz, Multipliers on fractional Sobolev spaces. J. Math. Mech. 16 (1967), 1031–1060. R. S. Strichartz, Fubini-type theorems. Ann. Sc. Norm. Super. Pisa (3) 22 (1968), 399–408. E. Tadmor, Hierarchical solutions for linear equations: A constructive proof of the closed range theorem. Preprint, arXiv:1003.1525. L. Tartar, Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires. In: Journées d’Analyse Non Linéaire (Besançon, 1977), Lecture Notes in Math. 665, Springer, Berlin, 1978, 228–241. L. Tartar, Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics (Heriot-Watt Symposium, Vol. IV), Res. Notes in Math. 39, Pitman, Boston, MA, 1979, 136–212. L. Tartar, Homogénéisation et compacité par compensation. In: Séminaire Goulaouic-Schwartz (1978/1979), École Polytech., Palaiseau, 1979. L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 479–500. R. Temam and G. Strang, Functions of bounded deformation. Arch. Ration. Mech. Anal. 75 (1980/81), 7–21. H. Triebel, Theory of Function Spaces. Monographs in Math. 78, Birkhäuser, Basel, 1983. H. Triebel, The Structure of Functions. Monographs in Math. 97, Birkhäuser, Basel, 2001. Uchiyama A. (1982) A constructive proof of the Fefferman-Stein decomposition of BMO (Rn). Acta Math. 148, 215–241 J. Van Schaftingen, A simple proof of an inequality of Bourgain, Brezis and Mironescu. C. R. Math. Acad. Sci. Paris 338 (2004), 23–26. J. Van Schaftingen, Estimates for L 1-vector fields. C. R. Math. Acad. Sci. Paris 339 (2004), 181–186. J. Van Schaftingen, Estimates for L 1 vector fields with a second order condition. Acad. Roy. Belg. Bull. Cl. Sci. (6) 15 (2004), 103–112. J. Van Schaftingen, Function spaces between BMO and critical Sobolev spaces. J. Funct. Anal. 236 (2006), 490–516. J. Van Schaftingen, Estimates for L 1 vector fields under higher-order differential conditions. J. Eur. Math. Soc. (JEMS) 10 (2008), 867–882. J. Van Schaftingen, Limiting fractional and Lorentz space estimates of differential forms. Proc. Amer. Math. Soc. 138 (2010), 235–240. J. Van Schaftingen, Limiting Sobolev inequalities for vector fields and canceling linear differential operators. J. Eur. Math. Soc. (JEMS) 15 (2013), 877–921. Y. Wang and P.-L. Yung, A subelliptic Bourgain-Brezis inequality. J. Eur. Math. Soc. (JEMS) 16 (2014), 649–693. P.Wojtaszczyk, Banach Spaces for Analysts. Cambridge Stud. Adv. Math. 25, Cambridge University Press, Cambridge, 1991. X. Xiang, L 3/2-estimates of vector fields with L 1 curl in a bounded domain. Calc. Var. Partial Differential Equations 46 (2013), 55–74. P.-L. Yung, Sobolev inequalities for (0, q) forms on CR manifolds of finite type. Math. Res. Lett. 17 (2010), 177–196.