Limited potential of no-till agriculture for climate change mitigation

Nature Climate Change - Tập 4 Số 8 - Trang 678-683 - 2014
D. S. Powlson1, Clare M. Stirling2, M.L. Jat3, Bruno Gérard2, Cheryl Palm4, Pedro A. Sánchez4, Kenneth G. Cassman5
1Department of Sustainable Soils & Grassland Systems, Rothamsted Research, Harpenden, UK
2 International Maize and Wheat Improvement Center, Conservation Agriculture Program, Apdo, Distrito Federal, Mexico
3International Maize and Wheat Improvement Center, India Office, New Delhi, India
4Agriculture and Food Security Center, The Earth Institute at Columbia University, Palisades, USA
5Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

The Emissions Gap Report 2013 (United Nations Environment Programme, 2013).

IPCC Climate Change 2014: Mitigation of Climate Change (in the press); http://mitigation2014.org/report/final-draft

Giller, K. E., Witter, E., Corbeels, M. & Tittonell, P. Conservation agriculture and smallholder farming in Africa: the heretics view. Field Crop. Res. 114, 23–34 (2009).

Giller, K. E. et al. A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crop. Res. 124, 468–472 (2011).

Corbeels, M. et al. Understanding the impact and adoption of conservation agriculture in Africa: a multi-scale analysis. Agr. Ecosyst. Environ. 187, 155–170 (2014).

Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agr. Ecosyst. Environ. 164, 80–99 (2013).

Kirschbaum, M. U. F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48, 21–51 (2000).

Paustian, K. et al. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manage. 13, 230–244 (1997).

Lal, R. in Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation (eds Hillel, D & Rosenzweig, C) 287–305 (Imperial College Press, 2011).

Schlesinger, W. H. Carbon sequestration in soils: some cautions amidst optimism. Agr. Ecosyst. Environ. 82, 121–127 (2000).

Powlson, D. S., Whitmore, A. P. & Goulding, K. W. T. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur. J. Soil Sci. 62, 42–55 (2011).

Jackson, R. B. & Schlesinger, W. H. Curbing the U.S. carbon deficit. Proc. Natl Acad. Sci. USA 101, 15827–15829 (2004).

Jones, C. et al. Global climate change and soil carbon stocks: predictions from two contrasting models for the turnover of organic carbon in soil. Glob. Change Biol. 11, 154–166 (2005).

Lal, R. Soil carbon sequestration impacts on global change and food security. Science 304, 1623–1627 (2004).

Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).

Corsi, S., Friedrich, T., Kassam, A., Pisante, M. & de Moraes Sà, J. Soil Organic Carbon Accumulation and Greenhouse Gas Emission Reductions from Conservation Agriculture: A Literature Review (FAO, 2012).

Luo, Z., Wang, E. & Sun, O. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agr. Ecosyst. Environ. 139, 224–231 (2010).

Ngwira, A. R., Thierfelder, C. & Lambert, D. M. Conservation agriculture systems for Malawian smallholder farmers: long-term effects on crop productivity, profitability and soil quality. Renew. Agr. Food Syst. 28, 350–363 (2013).

Verhulst, N. et al. in Advances in Soil Science: Food Security and Soil Quality (eds Lal, R. & Stewart, B. A.) 137–208 (CRC Press, 2010).

Baveye, P. C. et al. From dust bowl to dust bowl: soils are still very much a frontier in science. Soil Sci. Soc. Am. J. 75, 2037–2048 (2011).

Ogle, S. M., Swan, A. & Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agr. Ecosyst. Environ. 149, 37–49 (2012).

Thierfelder, C. et al. Conservation agriculture in Southern Africa: advances in knowledge. Renew. Agr. Food Syst. http://doi.org/tqr (2014).

Govaerts, B. et al. Conservation agriculture and soil carbon sequestration: between myth and farmer reality. Crit. Rev. Plant Sci. 28, 97–122 (2009).

Virto, I., Burlot, P. & Chenu, C. Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108, 17–26 (2012).

Agulilera, E., Lassaletta, L., Gattinger, A. & Gimeno, B. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agr. Ecosyst. Environ. 168, 25–36 (2013).

Angers, D. A. & Eriksen-Hamel, N. S. Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Sci. Soc. Am. J. 72, 1370–1374 (2008).

Baker. J. M., Ochsner, T. E., Venterea, R. T. & Griffis, T. J. Tillage and soil carbon sequestration – What do we really know? Agr. Ecosyst. Environ. 118, 1–5 (2007).

Machado, P. L. O. A., Sohi, S. P. & Gaunt, J. L. Effect of no-tillage on turnover of organic matter in a Rhodic Ferralsol. Soil Use Manage. 19, 250–256 (2003).

Dimassi, B. et al. Long-term effects of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agr. Ecosyst. Environ. 188, 134–146 (2014).

Lal, R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit. Rev. Plant Sci. 22, 151–184 (2003).

Lal, R. Climate-resilient agriculture and soil organic carbon. Indian J. Agron. 58, 440–450 (2013).

Climate Smart Agriculture: A Call to Action (The World Bank, 2012); http://go.nature.com/Ai8K5j

Powlson, D. S. & Jenkinson, D. S. A comparison of the organic-matter, biomass, adenosine-triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils. J. Agr. Sci. 97, 713–721 (1981).

Ellert, B. H. & Bettany, J. R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 75, 529–538 (1995).

VandenBygaart, A. J. & Kay, B. D. persistence of soil organic carbon after ploughing a long-term no-till field in Southestern Ontario, Canada. Soil Sci. Soc. Am. J. 68, 1394–1402 (2004).

Lee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G. & Six, J. Determining soil carbon stock changes: simple bulk density corrections fail. Agr. Ecosyst. Environ. 134, 251–256 (2009).

Palm, C., Blanco-Canqui, H., DeClerck, F. & Gatere, L. Conservation agriculture and ecosystem services: An overview. Agr. Ecosyst. Environ. 187, 87–105 (2013).

Bhattacharyya, R., Tuti, M. D., Kundu, S., Bisht, J. K. & Bhatt, J. C. Conservation tillage impacts on soil aggregation and carbon pools in a sandy clay loam soil of the Indian Himalayas. Soil Sci. Soc. Am. J. 76, 617–627 (2012).

Chivenge, P. P., Murwira, H. K., Giller, K. E., Mapfumo, P. & Six, J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soil. Soil Till. Res. 94, 328–337 (2007).

Yang, X. M. & Kay, B. D. Impacts of tillage practices on total, loose- and occluded-particulate, and humified organic carbon fractions in soils within a field in southern Ontario. Can. J. Soil Sci. 81, 149–156 (2001).

Johnston, A. E., Poulton, P. R. & Coleman, K. Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Adv. Agron. 101, 1–57 (2009).

Powlson, D. S. et al. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agr. Ecosyst. Environ. 146, 23–33 (2012).

Gollany, H. T. et al. Predicting agricultural management influence on long-term soil organic carbon dynamics: implications for biofuel production. Agron. J. 103, 234–246. (2011).

FAOSTAT (FAO, 2012); http://go.nature.com/NXk2LC

De Gryze, S., Lee, J., Ogle, S., Paustian, K. & Six, J. Assessing the potential for greenhouse gas mitigation in intensively managed annual cropping systems at the regional scale. Agr. Ecosyst. Environ. 144, 150–158 (2011).

Derpsch, R., Friedrich, T., Kassam, A. & Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agr. Biol. Eng. 3, 1–26 (2010).

Conant, R. T., Easter, M., Paustian, K., Swan, A. & Williams, S. Impact of periodic tillage on soil C stocks: A synthesis. Soil Till. Res. 95, 1–10 (2007).

Kirkegaard, J. A. et al. Sense and nonsense in conservation agriculture: principles, pragmatism and productivity in Australian mixed farming systems. Agr. Ecosyst. Environ. 187, 133–145 (2014).

Andersson, J. A. & D'Souza, S. From adoption claims to understanding farmers and contexts: A literature review of Conservation Agriculture (CA) adoption among smallholder farmers in southern Africa. Agr. Ecosyst. Environ. 187, 116–132 (2014).

Pannell, D. J., Llewellyn, R. S. & Corbeels, M. The farm-level economics of conservation agriculture for resource-poor farmers. Agr. Ecosyst. Environ. 187, 52–64 (2014).

Tittonell, P. et al. Agroecology-based aggradation-conservation agriculture (ABACO): Targetting innovations to combat soil degradation and food insecurity in semi-arid Africa. Field Crop. Res. 132, 168–174 (2012).

Rochette, P. No-till only increases N2O emissions in poorly-aerated soils. Soil Till. Res. 101, 97–100 (2008).

Van Kessel, C. et al. Climate, duration, and N placement determine NO emissions in reduced tillage systems: a meta-analysis. Glob. Change Biol. 19, 33–44 (2013).

IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E) (Cambridge Univ. Press, 2007).

Mangalassery, S. et al. To what extent can tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci. Rep. 4, 4586 (2013).

Grace, P. R. et al. Soil carbon sequestration and associated economic costs for farming systems of the Indo-Gangetic Plain: A meta-analysis. Agr. Ecosyst. Environ. 146, 137–146 (2012).

Farage, P. K. et al. The potential for soil carbon sequestration in three tropical dryland farming systems of Africa and Latin America: A modelling approach. Soil Till. Res. 94, 457–472 (2007).

Post, W. M. & Kwon, K. C. Soil carbon sequestration and land-use change: processes and potential. Glob. Change Biol. 6, 317–327 (2000).

Smith, P., Haberl, H., Popp, A., Erb, K. H. & Lauk, C. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

http://go.nature.com/zP384K

Dobermann, A. & Cassman, K. G. Cereal area and nitrogen use are drivers of future nitrogen fertilizer consumption. Sci. China Ser. C 48, Supplement 1–14 (2005).

Zhang, W. et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl Acad. Sci. USA 110, 8375–8380 (2013).

Chadwick, D. et al. Manure management: implications for greenhouse gas emissions. Animal Feed Sci. Technol. 166–167, 514–531 (2011).

Petersen, S. O. et al. Manure management for greenhouse gas mitigation. Animal 7 (suppl. 2), 266–282 (2013).

Eckard, R. J., Grainger, C. & de Klein, C. A. M. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livest. Sci. 130, 47–56 (2010).

Reynolds, C. K., Crompton, L. A. & Mills, J. A. N. Improving the efficiency of energy utilization in cattle. Animal Prod. Sci. 51, 6–12 (2011).

West, T. O. & Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agr. Ecosyst. Environ. 91, 217–232 (2002).

Antle, J. M. & Ogle, S. M. Influence of soil C, N2O and fuel use on GHG mitigation with no-till adoption. Climatic Change 111, 609–625 (2012).

Baudron, F., Jaleta, M., Okitoi, O. & Tegegn, A. Conservation agriculture in African mixed crop-livestock systems: expanding the niche. Agr. Ecosyst. Environ. 187, 171–182 (2014).

Nelson, R. G. et al. Energy use and carbon dioxide emissions from cropland production in the United States, 1990–2004. J. Environ. Qual. 38, 418–425 (2009).