Limit State and Creep Behaviour of High-Density Polyethylene Geocell

An Deng1, Zhihao Huangfu1
1School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Siabil SMAG, Tafreshi SNM, Dawson AR (2020) Response of pavement foundations incorporating both geocells and expanded polystyrene (EPS) geofoam. Geotext Geomembranes 48(1):1–23

Venkateswarlu H, Ujjawal KN, Hegde A (2018) Laboratory and numerical investigation of machine foundations reinforced with geogrids and geocells. Geotext Geomembranes 46(6):882–896

Biswas A, Krishna AM (2017) Geocell-reinforced foundation systems: a critical review. Int J Geosynth Gr Eng. 3:2

Song F, Liu H, Ma L, Hu H (2018) Numerical analysis of geocell-reinforced retaining wall failure modes. Geotext Geomembranes 46(3):284–296

Tafreshi SNM, Darabi NJ, Dawson AR (2020) Combining EPS geofoam with geocell to reduce buried pipe loads and trench surface rutting. Geotext Geomembranes 48(3):400–418

Liu Y, Deng A, Jaksa M (2018) Three-dimensional modeling of geocell-reinforced straight and curved ballast embankments. Comput Geotech 102:53–65

Liu Y, Deng A, Jaksa M (2020) Three-dimensional discrete-element modeling of geocell-reinforced ballast considering breakage. Int J Geomech 20(4):04020032

Tafreshi SNM, Rahimi M, Dawson AR, Leshchinsky B (2019) Cyclic and post-cycling anchor response in geocell-reinforced sand. Can Geotech J 56(11):1700–1718

Hyeong-Joo K, Myoung-Soo W et al (2015) Finite-element analysis on the stability of geotextile tube-reinforced embankments under scouring. Int J Geomech. 15(2):6014019

Venkateswarlu H, Hegde A (2020) Effect of influencing parameters on the vibration isolation efficacy of geocell reinforced soil beds. Int J Geosynth Gr Eng. 6:2

Pokharel SK, Han J, Leshchinsky D, Parsons RL (2018) Experimental evaluation of geocell-reinforced bases under repeated loading. Int J Pavement Res Technol 11(2):114–127

Kolathayar S, Sowmya S, Priyanka E (2020) Comparative study for performance of soil bed reinforced with jute and sisal geocells as alternatives to HDPE Geocells. Int J Geosynth Gr Eng. 6:4

Edil TB, Benson CH, Bin-Shafique M, Tanyu BF, Kim W-H, Senol A (2002) Field evaluation of construction alternatives for roadways over soft subgrade. Transp Res Rec 1786(1):36–48

Dash SK (2012) Effect of geocell type on load-carrying mechanisms of geocell-reinforced sand foundations. Int J Geomech 12(5):537–548

Ferreira FB, Vieira CS, Lopes ML, Ferreira PG (2020) HDPE geogrid-residual soil interaction under monotonic and cyclic pullout loading. Geosynth Int 27(1):79–96

Allen TM, Bathurst RJ (2019) Geosynthetic reinforcement stiffness characterization for MSE wall design. Geosynth Int 26(6):592–610

Thakur JK, Han J, Parsons RL (2013) Creep behavior of geocell-reinforced recycled asphalt pavement bases. J Mater Civ Eng 25(10):1533–1542

Liu Y, Deng A, Jaksa M (2019) Failure mechanisms of geocell walls and junctions. Geotext Geomembranes 47(2):104–120

Eldesouky HMG, Brachman RWI (2020) Viscoplastic modelling of HDPE geomembrane local stresses and strains. Geotext Geomembranes 48(1):41–51

Merry SM, Bray JD (1997) Time-dependent mechanical response of HDPE geomembranes. J Geotech Eng 123(1):57–65

Cardile G, Moraci N, Pisano M (2017) Tensile behaviour of an HDPE geogrid under cyclic loading: experimental results and empirical modelling. Geosynth Int 24(1):95–112

Shinoda M, Bathurst RJ (2004) Lateral and axial deformation of PP, HDPE and PET geogrids under tensile load. Geotext Geomembranes 22(4):205–222

Yeo SS, Hsuan YG (2007) The short- and long-term compressive behavior of high-density polyethylene geonet and geocomposite under inclined conditions. Geosynth Int 14(3):154–164

Zhang C, Moore ID (1997) Nonlinear mechanical response of high density polyethylene. Part I: Experimental investigation and model evaluation. Polym Eng Sci. 37(2):404–13

Wesseloo J, Visser AT, Rust E (2004) A mathematical model for the strain-rate dependent stress-strain response of HDPE geomembranes. Geotext Geomembranes 22(4):273–295

ASTM D4533 / D4533M-15 Standard Test Method for Trapezoid Tearing Strength of Geotextiles. In ASTM International West Conshohocken, PA, USA.

ASTM D638–14 Standard Test Method for Tensile Properties of Plastics, ASTM International. In ASTM International West Conshohocken, PA, USA.

de França FAN, de Bueno B, S, (2011) Creep behavior of geosynthetics using confined-accelerated tests. Geosynth Int 18(5):242–254

Xu M, Hallinan B, Wille K (2016) Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high performance concrete. Cem Concr Compos 70:98–109

Kim DJ, El-Tawil S, Naaman AE (2008) Loading rate effect on pullout behavior of deformed steel fibers. ACI Mater J 105(6):576

Isik A, Gurbuz A (2020) Pullout behavior of geocell reinforcement in cohesionless soils. Geotext Geomembranes 48(1):71–81

Liu H (2007) Material Modelling for Structural analysis of Polyethylene. University of Waterloo.

Findley WN (1960) Mechanism and mechanics of creep of plastics, vol 16. SPE Journal, Providence

Sing A, Mitchell J (1968) 55. General stress-strain-time function for soils. J Terramechanics. 5(2):78

Spathis G, Katsourinis S, Kontou E (2017) Evaluation of fundamental viscoelastic functions by a nonlinear viscoelastic model. Polym Eng Sci 57(12):1389–1395

Zhang C, Moore ID (1997) Finite element modelling of inelastic deformation of ductile polymers. Geosynth Int 4(2):137–163

Kühl A, Muñoz-Rojas PA, Barbieri R, Benvenutti IJ (2017) A procedure for modeling the nonlinear viscoelastoplastic creep of HDPE at small strains. Polym Eng Sci 57(2):144–152

Bailey RW Creep of steel under simple and compund stresses, and the use of high initial temperature in steam power plants. In: Transactions of the World Power Conference. page 1089.

Norton FH (1929) The creep of steel at high temperatures. Library (Lond).