Likelihood ratio tests based on subglobal optimization: A power comparison in exponential mixture models

Wilfried Seidel1, Karl Mosler1, Manfred Alker2
1Universität der Bundeswehr Hamburg, Hamburg, Germany
2Universität zu Köln, Köln, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Böhning, D., Dietz, E., Schaub, R., Schlattmann, P., Lindsay, B. G. (1994). The Distribution of the Likelihood Ratio for Mixtures of Densities from the One-Parameter Exponential Family.Ann. Institute Statistical Mathematics 46, 373–388.

Bozdogan, H. (1993): Choosing the number of component clusters in the mixture-model using a new informational complexity criterion of the inverse Fisher information matrix, pp 40–54 inInformation and Classification, (ed. O. Opitz, B. Lausen, R. Klar). Berlin: Springer Verlag.

Dacunha-Castelle, D., Gassiat, E. (1997a). The estimation of the order of a mixture model,Bernoulli 3, 279–299.

Dacunha-Castelle, D., Gassiat, E. (1997b). Testing in locally conic models, and application to mixture models.ESAIM: Probability and Statistics 1, 285–317.

Dempster, A.P., Laird, N.M., Rubin, D.B. (1977) Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion).J. Royal Statistical Soc. B 39, 1–38.

Everitt, B.S., Hand, D.J. (1981).Finite Mixture Distributions. London: Chapman and Hall.

Hasselblad, V. (1982). Estimation of finite mixtures of distributions from the exponential family.J. American Statistical Association 64, 1459–1471.

Jewell, N.P. (1982). Mixtures of exponential distribution.Ann. Statistics 10, 479–484.

Kaylan, A.R., Harris, C.M. (1981). Efficient algorithms to derive maximum likelihood estimates for finite exponential and Weibull distributions.Computers and Operations Research 8, 97–104.

Lindsay, B.G. (1995).Mixture Models: Theory, Geometry and Applications. Hayward, California: Institute of Mathematical Statistics.

Maller, R.A., Zhou, X. (1996).Survival Analysis with Long-Time Survivors. Chichester: J. Wiley.

Meilijson, I. (1989). A fast improvement to the EM algorithm on its own terms.Journal Royal Statistical Soc. B 51, 127–138.

McLachlan, G.J. (1995): Mixtures—Models and Applications, chapter 19 inThe Exponential Distribution (eds. N. Balakrishnan, A.P. Basu). Amsterdam: Gordon and Breach.

McLachlan, G.J., Krishnan, T. (1997).The EM Algorithm and Extensions. New York: J. Wiley.

Richardson, S., Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion).J. Royal Statistical Soc. B 59, 731–792.

Robert, C. (1996). Mixtures of distributions: Inference and estimation, pp 441–464 inPractical Markov Chain Monte Carlo, (eds. W.R. Gilks, S. Richardson, D.J. Spiegelhalter). London: Chapman and Hall.

Titterington, D.M., Smith, A.F.M., Makov, U.E. (1985).Statistical Analysis of Finite Mixture Distributions. Chichester: J. Wiley.