Likelihood assessment for gene flow of transgenes from imported genetically modified soybean (<i>Glycine max</i> (L.) Merr.) to wild soybean (<i>Glycine soja</i> Seib. et Zucc.) in Japan as a component of environmental risk assessment
Tóm tắt
Từ khóa
Tài liệu tham khảo
Asano, T. (1995) <i>Glycine soja</i>. <i>In</i>: Asano, T. (ed.) SEEDS/FRUITS AND SEEDLINGS OF PLANTS IN JAPAN, The National Society for Education of Agricultural Community, Japan, Tokyo, p. 62.
Bailleul, D., S. Ollier, S. Huet, A. Gardarin and J. Lecomte (2012) Seed spillage from grain trailers on road verges during oilseed rape harvest: an experimental survey. PLoS ONE 7: e32752.
Chen, Y. and R.L. Nelson (2004) Genetic variation and relationships among cultivated, wild, and semiwild soybean. Crop Sci. 44: 316–325.
de Alencar, E.R., L.R.D.A. Faroni, A.F. de Lacerda Filho, L.G. Ferreira and M.R. Meneghitti (2006) Influence of different storage conditions on soybean grain quality. Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Brazil, pp. 30–37.
Dorokhov, D., A. Ignatov, E. Deineko, A. Serjapin, A. Ala and K. Skryabin (2004) Potential for gene flow from herbicide-resistant GM soybeans to wild soya in the Russian Far East. <i>In</i>: den Nijs, H.C.M., D. Bartsch and J. Sweet (eds.) Introgression from Genetically Modified Plants into Wild Relatives, CAB International, Wallingford, United Kingdom, pp. 151–161.
Geospatial Information Authority of Japan (2015) Topographic map of 1:25,000. Tokyo. http://www1.gsi.go.jp/geowww/LandUse/lum-25k.html [Accessed July 21].
Goto, H., H. Shimada, M.J. Horak, A. Ahmad, B.M. Baltazar, T. Perez, M.A. McPherson, D. Stojšin, A. Shimono and R. Ohsawa (2016) Characterization of natural and simulated herbivory on wild soybean (<i>Glycine soja</i> Seib. et Zucc.) for use in ecological risk assessment of insect protected soybean. PLoS ONE 11: e0151237.
Hajika, M., K. Takahashi and S. Hiraga (2003) Exploration and collection of <i>Glycine soja</i> in the Boso Peninsula, Chiba Prefecture. Annual Report on Exploration and Introduction of Plant Genetic Resources 19: 7–15.
Hill, R.A. (2005) Conceptualizing risk assessment methodology for genetically modified organisms. Environ. Biosafety Res. 4: 67–70.
James, C. (2015) 20th Anniversary (1996 to 2015) of the Global Commercialization of Biotech Crops and Biotech Crop Highlights in 2015. ISAAA Brief, Ithaca, NY.
Kaga, A., Y. Kuroda, N. Tomooka, D. Vaughan, R. Ohsawa, H. Saji and Y. Tabei (2006) Studies on the fitness of wild/cultivated soybean hybrids in Japan. Studies on the effect of genetically modified organisms on biodiversity and its gene behavior in environment, Japan, pp. 145–155.
Kikuchi, A., M. Saruta and A. Okabe (2005) Collection of the wild soybean (<i>Glycine soja</i>) in the Yoshino Basin. Annual Report on Exploration and Introduction of Plant Genetic Resources 21: 1–7.
Kim, K.-U., T.-D. Kang, J.-H. Lee, I.-J. Lee, D.-H. Shin, Y.-H. Hwang, S.-U. Kim and H.-M. Kim (2003) Physio-ecological characteristics of wild soybeans (<i>Glycine soja</i>) collected throughout Korea and their response to glyphosate. Korean Journal of Weed Science 23: 153–159.
Kitamoto, N., A. Kaga, Y. Kuroda and R. Ohsawa (2012) A model to predict the frequency of integration of fitness-related QTLs from cultivated to wild soybean. Transgenic Res. 21: 131–138.
Kozak, M. (2009) Evolutionary aspects microsporogenesis and microgametogenesis interspecific hybrids within the genus <i>Glycine</i> L. Soyb. Genet. Newsl. 36: 1–8.
Kuroda, Y., A. Kaga, N. Tomooka and D.A. Vaughan (2008) Gene flow and genetic structure of wild soybean (<i>Glycine soja</i>) in Japan. Crop Sci. 48: 1071–1079.
Kuroda, Y., A. Kaga, N. Tomooka and D. Vaughan (2010) The origin and fate of morphological intermediates between wild and cultivated soybeans in their natural habitats in Japan. Mol. Ecol. 19: 2346–2360.
Liu, J., B. Zhou, C.-y. Yang, Y.-r. Li, L.-x. Jiang, M.-c. Zhang, B. Tao and L.-j. Qiu (2012) Gene flowing of genetically modified glyphosate-resistant soybean with <i>EPSPS</i>. Soybean Sci. 31: 517–521.
Lusas, E.W. (2004) Soybean processing and utilization. <i>In</i>: Boerme, H.R. and J.R. Specht (eds.) Soybeans: Improvement, Production and Uses, American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, pp. 949–1036.
MAFF (2011a) Survey on GM plants in 2009. http://www.maff.go.jp/j/syouan/nouan/carta/c_data/pdf/21kekka.pdf.
MAFF (2011b) Survey on GM plants in 2010. http://www.maff.go.jp/j/syouan/nouan/carta/c_data/pdf/22_natane.pdf.
MAFF (2012) Survey on GM plants in 2011. http://www.maff.go.jp/j/press/syouan/nouan/pdf/120912-02.pdf
MAFF (2013) Survey on GM plants in 2012. http://www.maff.go.jp/j/syouan/nouan/carta/c_data/pdf/24_kekka.pdf.
MAFF (2014) Survey on GM plants in 2013. http://www.maff.go.jp/j/syouan/nouan/carta/torikumi/pdf/h25_kekka.pdf.
MAFF (2015) Data on soybeans 11 Trends of soybean demand. http://www.maff.go.jp/j/seisan/ryutu/daizu/d_data/pdf/011.pdf [Accessed Jan. 13].
MAFF (2016) Fat and fatty oil in Japan, 2009. Japan oilseeds processors association. http://www.library.maff.go.jp/archive/Index/200369015_0001?p=1&m=0&fop=0&top=0&aop=0&lop=0&s=0&lpp=0&cId=135&st=0&ist=False [Accessed January, 2016].
Mbofung, G.C.Y., A.S. Goggi, L.F.S. Leandro and R.E. Mullen (2013) Effects of storage temperature and relative humidity on viability and vigor of treated soybean seeds. Crop Sci. 53: 1086–1095.
Mizuguti, A., Y. Yoshimura and K. Matsuo (2009) Flowering phenologies and natural hybridization of genetically modified and wild soybeans under field conditions. Weed Biol. Manag. 9: 93–96.
Mizuguti, A., K. Ohigashi, Y. Yoshimura, A. Kaga, Y. Kuroda and K. Matsuo (2010) Hybridization between GM soybean (<i>Glycine max</i> (L.) Merr.) and wild soybean (<i>Glycine soja</i> Sieb. et Zucc.) under field conditions in Japan. Environ. Biosafety Res. 9: 13–23.
MOE (2014) Japan Biosafety Clearing House. http://www.bch.biodic.go.jp/english/e_index.html [Accessed October, 7].
MOF (2015) Trade statistics of Japan. http://www.customs.go.jp/toukei/info/index.htm [Accessed Jan 8].
Nakayama, Y. and H. Yamaguchi (2002) Natural hybridization in wild soybean (<i>Glycine max</i> ssp. <i>soja</i>) by pollen flow from cultivated soybean (<i>Glycine max</i> ssp. <i>max</i>) in a designed population. Weed Biol. Manag. 2: 25–30.
Nickson, T.E. (2008) Planning environmental risk assessment for genetically modified crops: problem formulation for stress-torelant crops. Plant Physiol. 147: 494–502.
Nishizawa, T., N. Nakajima, M. Aono, M. Tamaoki, A. Kubo and H. Saji (2009) Monitoring the occurrence of genetically modified oilseed rape growing along a Japanese roadside: 3-year observations. Environ. Biosafety Res. 8: 33–44.
Numata, M. and N. Yoshizawa (1975) <i>Glycine soja</i>. <i>In</i>: Numata, M. and N. Yoshizawa (eds.) Pictorial Book of Weed in Japan New Edition, The National Society for Education of Agricultural Community, Tokyo, p. 107.
OECD (2000) Consensus document on the biology of <i>Glycine max</i> (L.) Merr. (Soybean). ENV/JM/MONO(2000)9. Series on Harmonization of Regulatory Oversight in Biotechnology No. 15. Organisation for Economic Co-operation and Development, Paris, France.
Ohashi, H. (1999) Glycine Willd. <i>In</i>: Satake, Y., J. Ohwi, S. Kitamura, S. Watari and T. Tominari (eds.) Wild Flowers of Japan; Herbaceous Plants (Including Dwarf Subshrubs), Heibonsha, Tokyo, pp. 186–213.
Ohigashi, K., A. Mizuguti, Y. Yoshimura, K. Matsuo and T. Miwa (2014) A new method for evaluating flowering synchrony to support the temporal isolation of genetically modified crops from their wild relatives. J Plant Res. 127: 109–117.
Oka, H.-I. (1983) Genetic control of regenerating success in semi-natural conditions observed among lines derived from a cultivated × wild soybean hybrid. J. Appl. Ecol. 20: 937–949.
Owen, M. (2005) Maize and soybeans—Controllable volunteerism without ferality? <i>In</i>: Gressel, J. (ed.) Crop Ferality and Volunteerism, OECD + Taylor & Francis, pp. 149–165.
Roberts, A., Y. Devos, A. Raybould, P. Bigelow and A. Gray (2014) Environmental risk assessment of GE plants under low-exposure conditions. Transgenic Res. 23: 971–983.
Roberts, A., F. Finardi-Filho, S. Hegde, J. Kiekebusch, G. Klimpel, M. Krieger, M.A. Lema, P. Macdonald, C. Nari, C. Rubinstein et al. (2015) Proposed criteria for identifying GE crop plants that pose a low or negligible risk to the environment under conditions of low-level presence in seed. Transgenic Res. 24: 783–790.
Saruta, M., A. Kikuchi and A. Okabe (2007) Collection of the wild soybean (<i>Glycine soja</i>) in Shimanto Basin. Annual Report on Exploration and Introduction of Plant Genetic Resources 23: 1–7.
Suda, Y. and S. Shirasawa (1995) A flower calendar of Yahaba Town, Iwate Prefecture 1: flowering times and flowering periods. Proceeding of the Faculty of Education of Iwate University 55: 165–183.
Takahashi, M., M. Hajika and K. Igita (1996) Growth characteristics of wild soybean (<i>Glycine soja</i>) collected from the central part Kyushu. Kyushu Agricultural Research 58: 51.
von der Lippe, M. and Kowarik, I. (2007a) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv. Biol. 21: 986–996.
von der Lippe, M. and I. Kowarik (2007b) Crop seed spillage along roads: a factor of uncertainty in the containment of GMO. Ecography 30: 483–490.
Wolt, J.D., P. Keese, A. Raybould, J.W. Fitzpatrick, M. Burachik, A. Gray, S.S. Olin, J. Schiemann, M. Sears and F. Wu (2010) Problem formulation in the environmental risk assessment for genetically modified plants. Transgenic Res. 19: 425–436.
Yamada, T., M. Hajika, N. Yamada, K. Hirata and Y. Tsubokura (2012) Exploration and collection of <i>Glycine soja</i> in the Kii Peninsula. Annual Report on Exploration and Introduction of Plant Genetic Resources 28: 43–49.
Yamaura, K. (2011) Market power of the Japanese non-GM soybean import market: The U.S. exporters vs. Japanese importers. Asian Journal of Agriculture and Rural Develompent 1: 80–89.
Yoshimura, Y., H.J. Beckie and K. Matsuo (2006a) Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ. Biosafety Res. 5: 67–75.