Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid)

Journal of Thermal Analysis and Calorimetry - Tập 126 - Trang 1243-1251 - 2016
Anju Gupta1, William Simmons1, Gregory T. Schueneman2, Eric A. Mintz1
1Department of Chemistry and High Performance Polymers and Composites Center, Clark Atlanta University, Atlanta, USA
2Forest Products Laboratory, USDA Forest Service, Madison, USA

Tóm tắt

We report the effect of lignin-coated cellulose nanocrystals (L-CNCs) on the crystallization behavior of poly(lactic acid) (PLA). PLA/L-CNC nanocomposites were prepared by melt mixing, and the crystallization behavior of PLA was investigated using differential scanning calorimetry. Isothermal crystallization data were analyzed using Avrami and Lauritzen–Hoffman secondary nucleation theory, while the equilibrium melting temperature was determined using the nonlinear Hoffman–Weeks method. The lignin-coated cellulose nanocrystals acted as a nucleating agent and significantly increased the rate of crystallization and degree of crystallinity of PLA in PLA/L-CNC nanocomposites. The Avrami exponent, n, increased in the presence of L-CNCs, displaying a conversion from lamellar morphology to two-dimensional crystal growth. PLA/L-CNC nanocomposites also gave lower values of the nucleation parameters, $$K_{\text{g}}$$ and σ e, due to a reduction in the activation energy for nucleation.

Tài liệu tham khảo

Jiménez A, Peltzer M, Ruseckaite R. Poly (lactic acid) science and technology: processing, properties, additives and applications. R Soc Chem. 2014. Garlotta D. A literature review of poly(lactic acid). J Polym Environ. 2001;9(2):63–84. doi:10.1023/a:1020200822435. Vasanthakumari R, Pennings AJ. Crystallization kinetics of poly(l-lactic acid). Polymer. 1983;24(2):175–8. doi:10.1016/0032-3861(83)90129-5. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37(12):1657–77. doi:10.1016/j.progpolymsci.2012.07.005. He Y, Fan Z, Hu Y, Wu T, Wei J, Li S. DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(l-lactide) with different molecular weights. Eur Polymer J. 2007;43(10):4431–9. doi:10.1016/j.eurpolymj.2007.07.007. Li C, Dou Q, Bai Z, Lu Q. Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim. 2015;122(1):407–17. doi:10.1007/s10973-015-4677-y. Jandas PJ, Mohanty S, Nayak SK. Thermal properties and cold crystallization kinetics of surface-treated banana fiber (BF)-reinforced poly(lactic acid) (PLA) nanocomposites. J Therm Anal Calorim. 2013;114(3):1265–78. doi:10.1007/s10973-013-3102-7. Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale. 2012;4(11):3274–94. doi:10.1039/c2nr30260h. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, et al. Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci. 2010;45(1):1–33. doi:10.1007/s10853-009-3874-0. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40(7):3941–94. doi:10.1039/c0cs00108b. Nishino T, Matsuda I, Hirao K. All-cellulose composite. Macromolecules. 2004;37(20):7683–7. doi:10.1021/ma049300h. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF. Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym. 2012;87(2):963–79. doi:10.1016/j.carbpol.2011.08.078. Takagi H, Asano A. Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos A Appl Sci Manuf. 2008;39(4):685–9. doi:10.1016/j.compositesa.2007.08.019. Liu D, Yuan X, Bhattacharyya D. The effects of cellulose nanowhiskers on electrospun poly (lactic acid) nanofibres. J Mater Sci. 2012;47(7):3159–65. doi:10.1007/s10853-011-6150-z. Kamal MR, Khoshkava V. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym. 2015;123:105–14. doi:10.1016/j.carbpol.2015.01.012. Luo H, Xiong G, Li Q, Ma C, Zhu Y, Guo R, et al. Preparation and properties of a novel porous poly(lactic acid) composite reinforced with bacterial cellulose nanowhiskers. Fibers Polym. 2014;15(12):2591–6. doi:10.1007/s12221-014-2591-8. Jonoobi M, Harun J, Mathew AP, Oksman K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol. 2010;70(12):1742–7. doi:10.1016/j.compscitech.2010.07.005. Wang T, Drzal LT. Cellulose-Nanofiber-Reinforced Poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces. 2012;4(10):5079–85. doi:10.1021/am301438g. Dhar P, Tarafder D, Kumar A, Katiyar V. Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites. RSC Adv. 2015;5(74):60426–40. doi:10.1039/c5ra06840a. Cho S, Park H, Yun Y, Jin H-J. Cellulose nanowhisker-incorporated poly(lactic acid) composites for high thermal stability. Fibers Polym. 2013;14(6):1001–5. doi:10.1007/s12221-013-1001-y. Liu Y, Wang L, He Y, Fan Z, Li S. Non-isothermal crystallization kinetics of poly(L-lactide). Polym Int. 2010;59(12):1616–21. doi:10.1002/pi.2894. Eyley S, Thielemans W. Surface modification of cellulose nanocrystals. Nanoscale. 2014;6(14):7764–79. doi:10.1039/c4nr01756k. Raquez JM, Murena Y, Goffin AL, Habibi Y, Ruelle B, DeBuyl F, et al. Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Compos Sci Technol. 2012;72(5):544–9. doi:10.1016/j.compscitech.2011.11.017. Hambardzumyan A, Foulon L, Chabbert B, Aguie-Beghin V. Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromolecules. 2012;13(12):4081–8. doi:10.1021/bm301373b. Ago M, Jakes JE, Johansson L-S, Park S, Rojas OJ. Interfacial properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals. ACS Appl Mater Interfaces. 2012;4(12):6849–56. doi:10.1021/am302008p. Nelson K, Retsina T. Innovative nanocellulose process breaks the cost barrier. TAPPI. 2014;13:19–23. Ge C, Ding P, Shi L, Fu J. Isothermal crystallization kinetics and melting behavior of poly(ethylene terephthalate)/barite nanocomposites. J Polym Sci Part B Polym Phys. 2009;47(7):655–68. doi:10.1002/polb.21669. Gupta A, Choudhary V. Thermal and mechanical properties of poly(trimethylene terephthalate)/acid-treated multiwalled carbon nanotube composites. J Mater Sci. 2013;48(20):7063–70. Yasuniwa M, Iura K, Dan Y. Melting behavior of poly(l-lactic acid): effects of crystallization temperature and time. Polymer. 2007;48(18):5398–407. doi:10.1016/j.polymer.2007.07.012. Song P, Chen G, Wei Z, Zhang W, Liang J. Calorimetric analysis of the multiple melting behavior of melt-crystallized poly(l-lactic acid) with a low optical purity. J Therm Anal Calorim. 2013;111(2):1507–14. doi:10.1007/s10973-012-2502-4. Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K. Crystallization behavior of poly(l-lactic acid). Polymer. 2006;47(21):7554–63. doi:10.1016/j.polymer.2006.08.054. Pei A, Zhou Q, Berglund LA. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)/crystallization and mechanical property effects. Compos Sci Technol. 2010;70(5):815–21. doi:10.1016/j.compscitech.2010.01.018. Robles E, Urruzola I, Labidi J, Serrano L. Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crops Prod. 2015;71:44–53. doi:10.1016/j.indcrop.2015.03.075. Pracella M, Haque MMU, Puglia D. Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer. 2014;55:3720–8. doi:10.1016/j.polymer.2014.06.071. Sanchez-Garcia M, Lagaron J. On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose. 2010;17(5):987–1004. doi:10.1007/s10570-010-9430-x. Herrera N, Mathew AP, Oksman K. Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol. 2015;106:149–55. doi:10.1016/j.compscitech.2014.11.012. Martinez-Sanz M, Abdelwahab MA, Lopez-Rubio A, Lagaron JM, Chiellini E, Williams TG, et al. Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties. Eur Polymer J. 2013;49:2062–72. doi:10.1016/j.eurpolymj.2013.04.035. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24. Lambrigger M. Non-isothermal polymer crystallization kinetics and Avrami master curves. Polym Eng Sci. 1998;38(4):610–5. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, et al. Crystallization and melting behavior of poly (l-lactic acid). Macromolecules. 2007;40(26):9463–9. doi:10.1021/ma070082c. Tsuji H, Takai H, Saha SK. Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer. 2006;47(11):3826–37. doi:10.1016/j.polymer.2006.03.074. Tsuji H, Miyase T, Tezuka Y, Saha SK. Physical properties, crystallization, and spherulite growth of linear and 3-arm poly(l-lactide)s. Biomacromolecules. 2005;6(1):244–54. doi:10.1021/bm049552q. Di Lorenzo ML. Crystallization behavior of poly(l-lactic acid). Eur Polym J. 2005;41(3):569–75. doi:10.1016/j.eurpolymj.2004.10.020. Abe H, Kikkawa Y, Inoue Y, Doi Y. Morphological and kinetic analyses of regime transition for poly[(S)-lactide] crystal growth. Biomacromolecules. 2001;2(3):1007–14. doi:10.1021/bm015543v. Tsuji H, Tezuka Y, Saha SK, Suzuki M, Itsuno S. Spherulite growth of l-lactide copolymers: effects of tacticity and comonomers. Polymer. 2005;46(13):4917–27. doi:10.1016/j.polymer.2005.03.069. Di Lorenzo ML. Determination of spherulite growth rates of poly(l-lactic acid) using combined isothermal and non-isothermal procedures. Polymer. 2001;42(23):9441–6. doi:10.1016/S0032-3861(01)00499-2. Vasanthan N, Ly H, Ghosh S. Impact of nanoclay on isothermal cold crystallization kinetics and polymorphism of poly(l-Lactic Acid) nanocomposites. J Phys Chem B. 2011;115(31):9556–63. doi:10.1021/jp203322d. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38(13):3151–212. doi:10.1016/S0032-3861(97)00071-2. Marand H, Xu J, Srinivas S. Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman-Weeks extrapolations. Macromolecules. 1998;31(23):8219–29. doi:10.1021/ma980747y.